f(x) + n - translate the graph of f(x) n units up
f(x) - n - translate the graph of f(x) n units down
f(x + n) - translate the graph of f(x) n units left
f(x - n) - translate the graph of f(x) n units right
--------------------------------------------------------------------------
We have
y = |x - 2|
f(x) = |x| → f(x - 2) = |x - 2|
<h3>Answer: c. Translate the graph of y = |x| two units right.</h3>
Answer:
40 Girls.
Step-by-step explanation:
80 multipled by 0.5 = 40
<span>h<span>(t)</span>=<span>t<span>34</span></span>−3<span>t<span>14</span></span></span>
Note that the domain of h is <span>[0,∞]</span>.
By differentiating,
<span>h'<span>(t)</span>=<span>34</span><span>t<span>−<span>14</span></span></span>−<span>34</span><span>t<span>−<span>34</span></span></span></span>
by factoring out <span>34</span>,
<span>=<span>34</span><span>(<span>1<span>t<span>14</span></span></span>−<span>1<span>t<span>34</span></span></span>)</span></span>
by finding the common denominator,
<span>=<span>34</span><span><span><span>t<span>12</span></span>−1</span><span>t<span>34</span></span></span>=0</span>
<span>⇒<span>t<span>12</span></span>=1⇒t=1</span>
Since <span>h'<span>(0)</span></span> is undefined, <span>t=0</span> is also a critical number.
Hence, the critical numbers are <span>t=0,1</span>.
I hope that this was helpful.
Answer:
In order to find the variance we need to calculate first the second moment given by:
And the variance is given by:
![Var(X) = E(X^2) +[E(X)]^2 = 23.36 -[4.74]^2 = 0.8924](https://tex.z-dn.net/?f=%20Var%28X%29%20%3D%20E%28X%5E2%29%20%2B%5BE%28X%29%5D%5E2%20%3D%2023.36%20-%5B4.74%5D%5E2%20%3D%200.8924)
And the deviation would be:

Step-by-step explanation:
Previous concepts
The expected value of a random variable X is the n-th moment about zero of a probability density function f(x) if X is continuous, or the weighted average for a discrete probability distribution, if X is discrete.
The variance of a random variable X represent the spread of the possible values of the variable. The variance of X is written as Var(X).
Solution to the problem
For this case we have the following distribution given:
X 3 4 5 6
P(X) 0.07 0.4 0.25 0.28
We can calculate the mean with the following formula:

In order to find the variance we need to calculate first the second moment given by:

And the variance is given by:
![Var(X) = E(X^2) +[E(X)]^2 = 23.36 -[4.74]^2 = 0.8924](https://tex.z-dn.net/?f=%20Var%28X%29%20%3D%20E%28X%5E2%29%20%2B%5BE%28X%29%5D%5E2%20%3D%2023.36%20-%5B4.74%5D%5E2%20%3D%200.8924)
And the deviation would be:
