the function f(x) = 4(x+3) − 5
Lets find the inverse function f^-1(x)
step 1: Replace f(x) with y
y = 4(x+3) − 5
step 2: Replace x with y and y with x
x = 4(y+3) - 5
step 3: Solve for y
x = 4(y+3) - 5
x = 4y +12 -5
x= 4y + 7 (subtract 7 on both sides)
x - 7 = 4y (divide by 4 on both sides)
Given : x = 3
We plug in 3 for x in the inverse function
= -1
the inverse function when x = 3 is -1
<em>Angle </em><em>ADG,</em><em> </em><em>angle</em><em> </em><em>BEH </em><em>and </em><em>angle</em><em> </em><em>CFI,</em><em> </em><em>all </em><em>have </em><em>two </em><em>curves</em><em> </em><em>in </em><em>their</em><em> </em><em>angles</em><em>.</em><em> </em><em>Same </em><em>number</em><em> of</em><em> </em><em>curves</em><em> </em><em>are </em><em>used</em><em> </em><em>to </em><em>represent</em><em> </em><em>that </em><em>their</em><em> </em><em>measure</em><em> </em><em>are </em><em>equal</em><em>.</em><em> </em>
So, m angle CFI = m angle ADG
So, m angle CFI = m angle ADG=> m angle CFI = 92°
(AAA) Corresponding angles are congruent.
Therefore, the sides of the triangles are proportional:
cross multiply
use distributive property
subtract 100 from both sides
divide both sides by 100

--------------------------------------------------------------------------------------------
(SAS)
If two sides and the included angle of one triangle are equal to the corresponding sides and angle of another triangle, the triangles are congruent.
Therefore we have the equation:

The perimeter of △PQR:

Substitute the value of y to the expression:
