Answer:
A = 9.9648
Step-by-step explanation:
if the triangle is equilateral =>
P = 3L => L = 14.4/3 = 4.8
A = L²√3/4
= (4.8)²√3/4
= 23.04√3/4
= 5.76×1.73
= 9.9648
Answer:
3.256*10³2
Step-by-step explanation:3.256 * 1000 = 3256 1000 =10³
Answer:
Formula for a linear sequence is
Tn=a+(n-1)d
where Tn is the nth term
a is the first term
n is the number of term
d is common difference
ANSWER
Yes it is very true
<u>EXPLANATION</u>
If the two equations intersect at
then this point must satisfy the two equations.

We substitute
in to erquation (1)




We now substitute
in to erquation (2) also



Since the point satisfy all the two equations, it is true that they intersect at 
Part A: x = -5/4, 3 || (-5/4, 0) (3, 0)
To find the x-intercepts, we need to know where y is equal to 0. So, we will set the function equal to 0 and solve for x.
4x^2 - 7x - 15 = 0
4 x 15 = 60 || -12 x 5 = 60 || -12 + 5 = -7
4x^2 - 12x + 5x - 15 = 0
4x(x - 3) + 5(x - 3) = 0
(4x + 5)(x - 3) = 0
4x + 5 = 0
x = -5/4
x - 3 = 0
x = 3
Part B: minimum, (7/8, -289/16)
The vertex of the graph will be a minimum. This is because the parabola is positive, meaning that it opens to the top.
To find the coordinates of the parabola, we start with the x-coordinate. The x-coordinate can be found using the equation -b/2a.
b = -7
a = 4
x = -(-7) / 2(4) = 7/8
Now that we know the x-value, we can plug it into the function and solve for the y-value.
y = 4(7/8)^2 - 7(7/8) - 15
y = 4(49/64) - 49/8 - 15
y = 196/64 - 392/64 - 960/64
y = -1156/64 = -289/16 = -18 1/16
Part C:
First, start by graphing the vertex. Then, use the x-intercepts and graph those. At this point we should have three points in a sort of triangle shape. If we did it right, each of the x-values will be an equal distance from the vertex. After we have those points graphed, it is time to draw in the parabola. Knowing that the parabola is positive, we draw in a U shape that passes through each of the three points and opens toward the top of the coordinate grid.
Hope this helps!