Answer:
(identity has been verified)
Step-by-step explanation:
Verify the following identity:
sin(x)^4 - sin(x)^2 = cos(x)^4 - cos(x)^2
sin(x)^2 = 1 - cos(x)^2:
sin(x)^4 - 1 - cos(x)^2 = ^?cos(x)^4 - cos(x)^2
-(1 - cos(x)^2) = cos(x)^2 - 1:
cos(x)^2 - 1 + sin(x)^4 = ^?cos(x)^4 - cos(x)^2
sin(x)^4 = (sin(x)^2)^2 = (1 - cos(x)^2)^2:
-1 + cos(x)^2 + (1 - cos(x)^2)^2 = ^?cos(x)^4 - cos(x)^2
(1 - cos(x)^2)^2 = 1 - 2 cos(x)^2 + cos(x)^4:
-1 + cos(x)^2 + 1 - 2 cos(x)^2 + cos(x)^4 = ^?cos(x)^4 - cos(x)^2
-1 + cos(x)^2 + 1 - 2 cos(x)^2 + cos(x)^4 = cos(x)^4 - cos(x)^2:
cos(x)^4 - cos(x)^2 = ^?cos(x)^4 - cos(x)^2
The left hand side and right hand side are identical:
Answer: (identity has been verified)
Answer:
a) P(X > 10) = 0.6473
b) P(X > 20) = 0.4190
c) P(X < 30) = 0.7288
d) x = 68.87
Step-by-step explanation:
Exponential distribution:
The exponential probability distribution, with mean m, is described by the following equation:

In which
is the decay parameter.
The probability that x is lower or equal to a is given by:

Which has the following solution:

The probability of finding a value higher than x is:

Mean equal to 23.
This means that 
(a) P(X >10)

So
P(X > 10) = 0.6473
(b) P(X >20)

So
P(X > 20) = 0.4190
(c) P(X <30)

So
P(X < 30) = 0.7288
(d) Find the value of x such that P(X > x) = 0.05
So





