Answer:
E) Improve membrane fluidity
Explanation:
Cholesterol constitutes the basic structural element of the skeleton of cell membranes. Without their reinforcement, the membranes would become extremely fluid and lose their consistency. Cholesterol is found in the esterified membranes in its hydroxyl group (OH): with fatty acids, mainly oleic and linoleic, or as cholesterol sulfate. The cholesterol-sulfate polar group is disposed on one of the faces of the membrane that interacts with other polar groups in that area, while its bulky hydrophobic portion is embedded between the apolar parts of the lipids that form the membrane skeleton and They fulfill many other functions, among which the reduction in the permeability of protons and sodium ions, and their participation in signal transmission. Cholesterol is also essential in phagocytosis processes carried out by cells to capture many nutrients and, in general, for the function of cleaning up organic waste produced by macrophages.
The membranes must have a fluid structure so that the integrated proteins can move "horizontally" to interact with their ligands and with other proteins. The fluidity is given by unsaturated fat. With the excess of saturated fat, the membranes become rigid, but only with the necessary unsaturated fat the membranes are extremely fluid and very sensitive to temperature changes. Cholesterol stabilizes the structure of the membranes; In order for them to have the correct structure, they must have the correct proportions of saturated, unsaturated fats and cholesterol. The membranes produced in the laboratory without cholesterol are unstable to temperature changes, drastically modifying their fluidity against the small temperature changes that occur in the physiological range.
In addition to its functions in cell membranes, cholesterol is an important product that metabolism uses as a raw material to make other compounds:
*Bile salts
*Sex hormones
*Hormones of the adrenal cortex (corticosteroids)
*Vitamin D (Calciferol)
Answer:
Dominant: 20, Recessive: 20
Explanation:
The case shown in the question above explores simple Mendelian traits, since it shows a population where individuals of the same species present the dominant allele (R- red) and the recessive allele (r- white). We can project, then, that this population has an allele balance, where it is possible to find 20 red beans, which have the dominant allele and 20 white beans, which present the recessive allele.
Answer:
temperature
Explanation:
I choose temperature because it tells how hot,cold,dry and warm somethings are meanwhile evaporation is when water changes from liquid to gas,so that means water gets hot.
Precipitation is when water released from the cloud to form rain,freezing rain,sleet,snow,or hail.Which means thing get cold.
Air pressure also affect evaporation, which means that water will not be able to come up of the surface of a body of water.So that means the the pressure will be pushing down on the surface of the water.
Answer:
Unlike typical mammalian red blood cells, those from amphibians, such as frogs, contain a DNA-bearing nucleus that is visible in the center of the cell. The circulatory system of amphibians is rather unusual, their hearts having three chambers, two atria, and a single ventricle.
NegativePositive
Positive
The design of the amphibian circulatory system is curious because blood accumulates oxygen in the lungs and is then returned to the heart before being pumped into the rest of the circulatory system. Therefore, a mixing between oxygenated and deoxygenated blood occurs as blood returning to the heart from the lungs is mixed with incoming blood from the body. Frogs handle this situation by having a very slow metabolism and by absorbing some oxygen through their skin. In addition, the ventricle does have some directional control over the distribution of the blood.
Negative
The presence of a nucleus in amphibian red blood cells allows researchers easy access to large quantities of amphibian DNA. Frog blood has both a solid and a liquid portion. The liquid plasma carries solid elements such as red and white blood cells. Blood can be collected from frogs and the red blood cells isolated by centrifugation. After removal of the residual plasma, purified cells can be treated with specific enzymes and detergents to digest the cellular envelope and release DNA from its protein complex. The DNA is then useful for scientific studies and experiments.
Featured in: Phase Contrast
Explanation: