true if that's what ur looking for. hope this helps
I added 40 and 120 to get 160. i devided 160 by the 6.25 she earned and got 25.6. then i rounded up to 26 hours which is the least amount of hours she could’ve worked.
Answer:
<u>6b - 4a + 22 units</u>
Step-by-step explanation:
Perimeter = 2(length + width)
= 2(3b - 4a + 5 + 6 + 2a)
= 2(3b - 2a + 11)
= <u>6b - 4a + 22 units</u>
A function m(t)= m₀e^(-rt) that models the mass remaining after t years is; m(t) = 27e^(-0.00043t)
The amount of sample that will remain after 4000 years is; 4.8357 mg
The number of years that it will take for only 17 mg of the sample to remain is; 1076 years
<h3>How to solve exponential decay function?</h3>
A) Using the model for radioactive decay;
m(t)= m₀e^(-rt)
where;
m₀ is initial mass
r is rate of growth
t is time
Thus, we are given;
m₀ = 27 mg
r = (In 2)/1600 = -0.00043 which shows a decrease by 0.00043
and so we have;
m(t) = 27e^(-0.00043t)
c) The amount that will remain after 4000 years is;
m(4000) = 27e^(-0.00043 * 4000)
m(4000) = 27 * 0.1791
m(4000) = 4.8357 mg
d) For 17 mg to remain;
17 = 27e^(-0.00043 * t)
17/27 = e^(-0.00043 * t)
In(17/27) = -0.00043 * t
-0.4626/-0.00043 = t
t = 1076 years
Read more about Exponential decay function at; brainly.com/question/27822382
#SPJ1