See explanation below.
Explanation:
The 'difference between roots and factors of an equation' is not a straightforward question. Let's define both to establish the link between the two..
Assume we have some function of a single variable
x
;
we'll call this
f
(
x
)
Then we can form an equation:
f
(
x
)
=
0
Then the "roots" of this equation are all the values of
x
that satisfy that equation. Remember that these values may be real and/or imaginary.
Now, up to this point we have not assumed anything about
f
x
)
. To consider factors, we now need to assume that
f
(
x
)
=
g
(
x
)
⋅
h
(
x
)
.
That is that
f
(
x
)
factorises into some functions
g
(
x
)
×
h
(
x
)
If we recall our equation:
f
(
x
)
=
0
Then we can now say that either
g
(
x
)
=
0
or
h
(
x
)
=
0
.. and thus show the link between the roots and factors of an equation.
[NB: A simple example of these general principles would be where
f
(
x
)
is a quadratic function that factorises into two linear factors.
Anita's account had linear growth
Miguel's account had exponential growth.
Miguel's account grew faster because exponential growth is faster than linear growth
Calculate and multiply to get
-4/(-6)+7 - 2x(-2)/-1x3+7
Next remove parentheses and calculate,
You'll get -4/-6+7 - 2x(-2)/4
Then calculate and reduce,
-4/1 - -2/2
Reduce and divide to get -4-(-1)
Remove parentheses, -4+1
And calculate to get your final answer
= -3