Answer:
Step-by-step explanation:
a) The formula for determining the standard error of the distribution of differences in sample proportions is expressed as
Standard error = √{(p1 - p2)/[(p1(1 - p1)/n1) + p2(1 - p2)/n2}
where
p1 = sample proportion of population 1
p2 = sample proportion of population 2
n1 = number of samples in population 1,
n2 = number of samples in population 2,
From the information given
p1 = 0.77
1 - p1 = 1 - 0.77 = 0.23
n1 = 58
p2 = 0.67
1 - p2 = 1 - 0.67 = 0.33
n2 = 70
Standard error = √{(0.77 - 0.67)/[(0.77)(0.23)/58) + (0.67)(0.33)/70}
= √0.1/(0.0031 + 0.0032)
= √1/0.0063
= 12.6
the standard error of the distribution of differences in sample proportions is 12.6
b) the sample sizes are large enough for the Central Limit Theorem to apply because it is greater than 30
Yes, the new coordinates would be:
R': (9,9)
P': (3,3)
Q': (9,3)
You would multiply all of the current coordinates by three (its scale factor of enlargement) to obtain these answers. Hope this helps!
Answer:
$1161
Step-by-step explanation:
21.5% of 5400 is 1161.
Answer:
a[n] = a[n-1]×(4/3)
a[1] = 1/2
Step-by-step explanation:
The terms of a geometric sequence have an initial term and a common ratio. The common ratio multiplies the previous term to get the next one. That sentence describes the recursive relation.
The general explicit term of a geometric sequence is ...
a[n] = a[1]×r^(n-1) . . . . . where a[1] is the first term and r is the common ratio
Comparing this to the expression you are given, you see that ...
a[1] = 1/2
r = 4/3
(You also see that parenthses are missing around the exponent expression, n-1.)
A recursive rule is defined by two things:
- the starting value(s) for the recursive relation
- the recursive relation relating the next term to previous terms
The definition of a geometric sequence tells you the recursive relation is:
<em>the next term is the previous one multiplied by the common ratio</em>.
In math terms, this looks like
a[n] = a[n-1]×r
Using the value of r from above, this becomes ...
a[n] = a[n-1]×(4/3)
Of course, the starting values are the same for the explicit rule and the recursive rule:
a[1] = 1/2
Answer:
Step-by-step explanation:
Next time, please share the possible answer choices.
Since the slope and y-intercept are given here, we can immediately write out the slope-intercept form of the equation of this line:
y = mx + b becomes y = -1x - 5, where I have arbitrarily chosen the negative slope -1.