March is 8 months away from August and the target amount is $600.
August = $50
September = $50 + (0.2*50)=$60
October = $60 + (0.2*60)=$72
November=$72+(0.2*72)=$86.4
December=$86.4 + (0.2*$86.4)=$103.68
January=$103.68+(0.2*103.68)= $124.416
February=$124.416+(0.2*124.416)=$149.3
March=$149.3 +(0.2*149.4)=$179.2
Total amount = $824.6
Yes, she will have money for the trip
We are given
equation of line as

we will check each options
option-A:
we can plug (3,1)
x=3 and y=1


we can see that
they are not equal
so, this is FALSE
option-B:
we can plug (-1,-2)
x=-1 and y=-2


we can see that
they are equal
so, this is TRUE
option-C:
we can plug (-3,4)
x=-3 and y=4


we can see that
they are not equal
so, this is FALSE
option-D:
we can plug (2,6)
x=2 and y=6


we can see that
they are not equal
so, this is FALSE
Answer:9x hope it helps
Step-by-step explanation:
Let x be the distance (in feet) along the road that the car has traveled and h be the distance (in feet) between the car
and the observer.
(a) Before the car passes the observer, we have dh/dt < 0; after it passes, we have dh/dt > 0. So at the instant it passes the observer we have
dh/dt = 0, given that dh/dt varies continuously since the car travels at a constant velocity.
![\bf -7x-2y=4\implies -2y=7x+4\implies y=\cfrac{7x+4}{-2}\implies y=\cfrac{7x}{-2}+\cfrac{4}{-2} \\\\\\ y=\stackrel{\stackrel{m}{\downarrow }}{-\cfrac{7}{2}} x-2\qquad \impliedby \begin{array}{|c|ll} \cline{1-1} slope-intercept~form\\ \cline{1-1} \\ y=\underset{y-intercept}{\stackrel{slope\qquad }{\stackrel{\downarrow }{m}x+\underset{\uparrow }{b}}} \\\\ \cline{1-1} \end{array} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20-7x-2y%3D4%5Cimplies%20-2y%3D7x%2B4%5Cimplies%20y%3D%5Ccfrac%7B7x%2B4%7D%7B-2%7D%5Cimplies%20y%3D%5Ccfrac%7B7x%7D%7B-2%7D%2B%5Ccfrac%7B4%7D%7B-2%7D%20%5C%5C%5C%5C%5C%5C%20y%3D%5Cstackrel%7B%5Cstackrel%7Bm%7D%7B%5Cdownarrow%20%7D%7D%7B-%5Ccfrac%7B7%7D%7B2%7D%7D%20x-2%5Cqquad%20%5Cimpliedby%20%5Cbegin%7Barray%7D%7B%7Cc%7Cll%7D%20%5Ccline%7B1-1%7D%20slope-intercept~form%5C%5C%20%5Ccline%7B1-1%7D%20%5C%5C%20y%3D%5Cunderset%7By-intercept%7D%7B%5Cstackrel%7Bslope%5Cqquad%20%7D%7B%5Cstackrel%7B%5Cdownarrow%20%7D%7Bm%7Dx%2B%5Cunderset%7B%5Cuparrow%20%7D%7Bb%7D%7D%7D%20%5C%5C%5C%5C%20%5Ccline%7B1-1%7D%20%5Cend%7Barray%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)

now, what's the slope of a line parallel to that one above? well, parallel lines have exactly the same slope.