Primary structure, which is simply the sequence of amino acids in a polypeptide molecule.
Answer:
D. The griffin has no role in biology, because it is not real.
Explanation:
Science focuses solely on the natural world.
Answer:
With respect to the differences in the DNA sequence of six species, including the human one, it is true that the DNA sequences may vary but the aminoacid sequences are identical.
Explanation:
Options for this question:
- <em>The DNA sequences may vary but the amino acid sequences are identical.
</em>
-
The nitrogen bases in the nucleotides must also be different in each.
-
The process in producing additional DNA, replication, is identical in all six.
-
The process of producing DNA, or replication, varies due to the differences in the DNA codes.
The different species that exist have specific genomes for each of them, this is the <u>genetic information contained in the DNA varies from one species to another</u>, as can be seen in the scheme (see image). However, the genetic code is universal, and does not vary from one species to another.
The genetic code is found in the RNA molecule and is a sequence of nucleotides that, organized in triplets (codons), are responsible for the synthesis of specific amino acids. An RNA molecule contains the information necessary for protein synthesis.
The scheme shows the differences of five species with respect to the human, based on the respective DNA sequences. But what it does not show is a universally accepted truth, that the nucleotide sequence encoding an amino acid is the same for each of these species.
Learn more:
Genetic code brainly.com/question/15338
Answer:
c. lactic acid fermentation
Explanation:
If we did alcoholic fermentation, working out would make us feel drunk, not sore. This is only done by yeasts (a type of fungus) and bacteria. Glycolysis is simply an anaerobic process that occurs with fermentation and also regular aerobic respiration. It doesn't cause any soreness on its own. The Krebs cycle is the second major part to cellular respiration; it produces 6 NADH's, 2 FADH2's, 4 CO2's and 2 ATP; it's not involved in creating any soreness, as cell respiration does not create soreness. That leaves lactic acid fermentation, which we, bacteria, yeasts, and other organisms do. This is what we do when we run out of ample oxygen while doing some strenuous activity. Glycolysis is done with it. Glycolysis, however, relies on NAD+ to create ATP we need to maintain the same level of activity, lactic acid is produced as it accepts the 2 electrons and [H+] NAD+ should accept.