S1 = 72
S2 = 12 = 72*(1/6)
S3 = 2 = 72*(1/6)^2
.
.
.
S15 = 72*(1/6)^14 = 9.18*10^(-10)
IGH because the angles line up
The rest of the question is the attached figure.
============================================
Δ AYW a right triangle at Y ⇒⇒⇒ ∴ WA² = AY² + YW²
And AY = YB ⇒⇒⇒ ∴ WA² = YB² + YW² → (1)
Δ BYW a right triangle at Y ⇒⇒⇒ ∴ WB² = BY² + YW² → (2)
From (1) , (2) ⇒⇒⇒ ∴ WA = WB →→ (3)
Δ CXW a right triangle at Y ⇒⇒⇒ ∴ WC² = CX² + XW²
And CX = XB ⇒⇒⇒ ∴ WC² = XB² + XW² → (4)
Δ BXW a right triangle at Y ⇒⇒⇒ ∴ WB² = XB² + XW² → (5)
From (4) , (5) ⇒⇒⇒ ∴ WC = WB →→ (6)
From (3) , (6)
WA = WB = WC
given ⇒⇒⇒ WA = 5x – 8 and WC = 3x + 2
∴ <span> 5x – 8 = 3x + 2</span>
Solve for x ⇒⇒⇒ ∴ x = 5
∴ WB = WA = WC = 3*5 + 2 = 17
The correct answer is option D. WB = 17
Answer:
4
Step-by-step explanation:
Let's do this in steps, show your work!
<u>#1. We need to move all terms to one side.</u>
<u>x^2 - 7x = 0</u>
<u>#2. Then factor out the common term x.</u>
<u>x(x - 7) = 0.</u>
<u>#3. Simplify to get..</u>
<u>x = 0, 7.</u>
<u />
If you need help with any other question let me know.
<u />