Answer:1. Pyruvate carboxylase
2. Phosphoenol pyruvate carboxy kinase
Explanation:
The conversion of pyruvate to phosphoenol pyruvate is catalyzed by two enzymes Pyruvate carboxylase and phosphoenol pyruvate carboxy kinase
1. Pyruvate carboxylase reaction
Pyruvate in the cytoplasm enters the mitochondria. Then, carboxylase of pyruvate to oxaloacetate is catalysed by a mitochondrial enzyme, pyruvate carboxylase. It needs the co-enzymes biotin and ATP.
The oxaloacetate formed has to be transported from the mitochondrial to the cytosol because further reaction of gluconeogenesis are taking place in cytosol.
2. Phoaphoenol pyruvate carboxy kinase (PEPCK)
In the cytoplasm, PEPCK enzyme then converts oxaloacetate to phoaphoenol pyruvate by removing a molecule of CO2. GTP or ITP donates the phosphate group.
The net effect of these two reactions is the conversion of pyruvate to phoaphoenol pyruvate. This circumverts the irreversible step in glycolysis catalyzed by pyruvate kinase (step 9 if glycolysis)
Answer:
The answer is sunlight.
Explanation:
Sunlight is captured from the plants leaves and that energy is used to break down water into hydrogen and oxygen.
Answer:
The correct answer is - both Lois and Lang are correct.
Explanation:
Psychotherapy is a term used for the treatment of the mental problems of an individual by discussing and talking to a psychiatrist or psychologist. In this treatment, patients learn about their problems and issues such as mood swings, depression, anxiety, behaviors, and feeling.
It is an effective treatment for most psychology patients and people with mental issues, however, it is not effective for everyone it has its own limitation. Thus, the correct answer would be both Lois and Lang are correct.
It breaks down and is denatured as any other protein molecule
Answer:
This question is incomplete
Explanation:
Introns are non-coding regions of a DNA that removed by RNA splicing prior to translation. Alignment is usually done between sequences to see and understand the identity and similarity between two or more sequences.
A region/base is said to be conserved if there is NO change in any base in that particular region. A multiple sequence alignment (MSA) can be used to align the donor sites of all the introns to see the bases that have not "changed" (and still remained in there exact position) hence conserved across all the donor sites.
NOTE: The donor site of an intron is the 5' end, thus the first five bases in the 5' end are to be used here