Answer:
(A) ![A=\left[\begin{array}{ccc}10&20&40\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D10%2620%2640%5Cend%7Barray%7D%5Cright%5D)
(B) ![B=\left[\begin{array}{ccc}11&22&44\end{array}\right]](https://tex.z-dn.net/?f=B%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D11%2622%2644%5Cend%7Barray%7D%5Cright%5D)
(C) ![A+B=\left[\begin{array}{ccc}21&42&84\end{array}\right]](https://tex.z-dn.net/?f=A%2BB%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D21%2642%2684%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
The manager ordered 10 lb of tomatoes, 20 lb of zucchini, and 40 lb of onions from a local farmer one week.
(A)
Matrix <em>A</em> represents the amount of each item ordered. It is 1 × 3 matrix.
Then matrix <em>A</em> is:
![A=\left[\begin{array}{ccc}10&20&40\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D10%2620%2640%5Cend%7Barray%7D%5Cright%5D)
(B)
Next week the manager increases the order of all the products by 10%.
Then the amount of new orders are:
Tomatoes ![=10\times [1+\frac{10}{100}]=10\times1.10=11](https://tex.z-dn.net/?f=%3D10%5Ctimes%20%5B1%2B%5Cfrac%7B10%7D%7B100%7D%5D%3D10%5Ctimes1.10%3D11)
Zucchini ![=20\times [1+\frac{10}{100}]=20\times1.10=22](https://tex.z-dn.net/?f=%3D20%5Ctimes%20%5B1%2B%5Cfrac%7B10%7D%7B100%7D%5D%3D20%5Ctimes1.10%3D22)
Onions ![=40\times [1+\frac{10}{100}]=40\times1.10=44](https://tex.z-dn.net/?f=%3D40%5Ctimes%20%5B1%2B%5Cfrac%7B10%7D%7B100%7D%5D%3D40%5Ctimes1.10%3D44)
Th matrix <em>B</em> represents the amount of each order for the next week. Then matrix <em>B</em> is:
![B=\left[\begin{array}{ccc}11&22&44\end{array}\right]](https://tex.z-dn.net/?f=B%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D11%2622%2644%5Cend%7Barray%7D%5Cright%5D)
(C)
Add the two matrix <em>A</em> and <em>B</em> as follows:
![A+B=\left[\begin{array}{ccc}10&20&40\end{array}\right]+\left[\begin{array}{ccc}11&22&44\end{array}\right]\\=\left[\begin{array}{ccc}(10+11)&(20+22)&(40+44)\end{array}\right]\\=\left[\begin{array}{ccc}21&42&84\end{array}\right]](https://tex.z-dn.net/?f=A%2BB%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D10%2620%2640%5Cend%7Barray%7D%5Cright%5D%2B%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D11%2622%2644%5Cend%7Barray%7D%5Cright%5D%5C%5C%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%2810%2B11%29%26%2820%2B22%29%26%2840%2B44%29%5Cend%7Barray%7D%5Cright%5D%5C%5C%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D21%2642%2684%5Cend%7Barray%7D%5Cright%5D)
The entries of the matrix (<em>A</em> + <em>B</em>) represent the amount of tomatoes, zucchini and onions ordered for two weeks.
Answer:
18
Step-by-step explanation:
Given the data:
180kg, 250kg, 200kg, 209kg, 195kg, 205kg, 190kg, 188kg, 192kg
The interquartile range (IQR) = Q3 - Q1
Reordering the data:
180, 188, 190, 192, 195, 200, 205, 209, 250
Q3 = 3/4(n+1)th term
Q3 = 3/4(10) = 7.5 th term = (205+209)/2 = 207
Q1 = 1/4(n+1)th term
Q1 = 1/4(10) = 2.5th term = (188+190)/2 = 189
Q3 - Q1 = 207 - 189 = 18
20% of 106
= 0.20 * 106
= 21.2
21.2 = 10.6% of 21.2 / 0.106
= 200 answer
2. 56 * 0.055 / 0.35
= 8.8
3. 6.4 / 0.8 = 8
Answer:
The worth of the TV after 3 years is £809.90208
Step-by-step explanation:
The answer to given question can be found from the anual depreciation formula and solving for the Future Value (F. V.) of the machine
The given parameters of the TV are;
The amount at which Collin buys the TV, P = £720
The rate at which the TV depreciates at, R = 4%
The number of years the depreciation is applied, T = 3 years
The amount the TV is worth after three years, 'A', is given as follows;

By plugging in the known values, we have;

The amount the TV is worth after three years, A = £809.90208
The area of a triangle in determined by the formula:

where b is the base of the triangle and h is it's height
You just have to replace the b and h with their values in the formula (b=9.9ft and h=5.5ft)
The answer is 27.225 ft^2