1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
JulijaS [17]
4 years ago
9

An equal fraction with a given denominator

Mathematics
1 answer:
Darina [25.2K]4 years ago
5 0
Is same as nominator.
You might be interested in
The length of a rectangle is 5 centimeters less than twice it’s width. The perimeter of the rectangle is 80 cm. What are the dim
algol [13]
<h3><u>The length is equal to 25.</u></h3><h3><u>The width is equal to 15.</u></h3>

l = 2w - 5

2l + 2w = 80

We have a value for l, so we can plug it into the second equation to solve for w.

2(2w - 5) + 2w = 80

Distributive property.

4w - 10 + 2w = 80

Combine like terms.

6w - 10 = 80

Add 10 to both sides.

6w = 90

Divide both sides by 6.

w = 15

Now that we have a value for w, we can plug it into the original equation to solve for l.

l = 2(15) - 5

l = 30 - 5

l = 25


3 0
3 years ago
A+b=180<br> A=-2x+115<br> B=-6x+169<br> What is the value of B?
natulia [17]
The answer is:  " 91 " .   
___________________________________________________
                    →    " B = 91 " .
__________________________________________________ 

Explanation:
__________________________________________________
Given:  
__________________________________________________
    "  A +  B = 180 " ;

  "A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ;  
_____________________________________________________
METHOD 1)
_____________________________________________________
Solve for "x" ; and then plug the solved value for "x" into the expression given for "B" ; to  solve for "B"
_____________________________________________________

(115 − 2x) + (169 − 6x) = 

  115 − 2x + 169 − 6x = ?

→ Combine the "like terms" ;  as follows:

      + 115 + 169 = + 284 ; 

 − 2x − 6x = − 8x ; 
_________________________________________________________
And rewrite as:

 " − 8x + 284 " ; 
_________________________________________________________
   →  " - 8x + 284 = 180 " ; 

Subtract:  "284" from each side of the equation:

  →  "  - 8x + 284 − 284 = 180 − 284 " ; 

to get:

 →  " -8x = -104 ; 

Divide EACH SIDE of the equation by "-8 " ; 
    to isolate "x" on one side of the equation; & to solve for "x" ; 

→ -8x / -8 = -104/-8 ; 

→  x = 13
__________________________________________________________
Now, to find the value of "B" :
__________________________________________________________
  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ;  

↔  B = 169 − 6x ;  

         = 169 − 6(13) ;   ===========> Plug in our "solved value, "13",  for "x" ;

         = 169 − (78) ; 

         = 91 ;

   B   = " 91 " .
__________________________________________________
The answer is:  " 91 " . 
____________________________________________________
     →     " B = 91 " . 
____________________________________________________
Now;  let us check our answer:
____________________________________________________
               →   A + B = 180 ;  
____________________________________________________
Plug in our "solved answer" ; which is "91", for "B" ;  as follows:
________________________________________________________

→  A + 91 = ? 180? ;  

↔  A = ? 180 − 91 ? ; 

→  A = ?  -89 ?  Yes!
________________________________________________________
→  " A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

Plug in our solved value for "x"; which is: "13" ; 

" A = 115 − 2x " ; 

→  A = ? 115 − 2(13) ? ;

→  A = ? 115 − (26) ? ; 

→  A = ? 29 ? Yes!
_________________________________________________ 
METHOD 2)
_________________________________________________
Given:  
__________________________________________________
    "  A +  B = 180 " ;

  "A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ; 

→  Solve for the value of "B" :
_______________________________________________________
 A + B = 180 ;  

→ B = 180 − A ; 

→ B = 180 − (115 − 2x) ; 

→ B = 180 − 1(115 − 2x) ;  ==========> {Note the "implied value of "1" } ; 
__________________________________________________________
Note the "distributive property" of multiplication:__________________________________________________  a(b + c)  = ab +  ac ;  <u><em>AND</em></u>:
  a(b − c)  = ab − ac .________________________________________________________
Let us examine the following part of the problem:
________________________________________________________
              →      " − 1(115 − 2x)  " ; 
________________________________________________________

→  "  − 1(115 − 2x) " = (-1 * 115) − (-1 * 2x) ;

                                =  -115 − (-2x) ;
                         
                                =  -115  +  2x ;        
________________________________________________________
So we can bring down the:  " {"B = 180 " ...}"  portion ; 

→and rewrite:
_____________________________________________________

→  B = 180 − 115 + 2x ; 

→  B = 65 + 2x ; 
_____________________________________________________
Now;  given:   "B = - 6x + 169 " ;  ↔  B = 169 − 6x ; 

→ " B =  169 − 6x  =  65 + 2x " ; 
______________________________________________________
→  " 169 − 6x  =  65 + 2x "

Subtract "65" from each side of the equation;  & Subtract "2x" from each side of the equation:

→  169 − 6x − 65 − 2x  =  65 + 2x − 65 − 2x ; 

to get:

→   " - 8x + 104 = 0 " ;
 
Subtract "104" from each side of the equation:

→   " - 8x + 104 − 104 = 0 − 104 " ;

to get: 

→   " - 8x = - 104 ;

Divide each side of the equation by "-8" ; 
   to isolate "x" on one side of the equation; & to solve for "x" ; 

→  -8x / -8  = -104 / -8 ; 

to get:

→  x =  13 ; 
______________________________________________________

Now, let us solve for:  " B " ;  → {for which this very question/problem asks!} ; 

→  B = 65 + 2x ;  

Plug in our solved value, " 13 ",  for "x" ; 

→ B = 65 + 2(13) ; 

        = 65 + (26) ;  

→ B =  " 91 " .
_______________________________________________________
Also, check our answer:
_______________________________________________________
Given:  "B = - 6x + 169 " ;   ↔  B = 169 − 6x = 91 ; 

When "x  = 13 " ; does: " B = 91 " ? 

→ Plug in our "solved value" of " 13 " for "x" ;

      → to see if:  "B = 91" ; (when "x = 13") ;

→  B = 169 − 6x ; 

         = 169 − 6(13) ; 

         = 169 − (78)______________________________________________________
→ B = " 91 " . 
______________________________________________________
6 0
3 years ago
The marked price of an article is Rs 2,800 which is 40 % above the cost price. If it
mixer [17]

Answer:

mp=2800

mp=cp+40%ofcp=cp+40/100×cp=1.4cp

2800=1.4çp

cp=2800/1.4=2000

discount=20%

profit%=?

Step-by-step explanation:

sp=mp-discount%of mp=2800-20/100×2800=2240

profit=sp-cp=2240-2000=240

profit%=profit/cp×100%=240/2000×100%=12%

7 0
3 years ago
2 1/3 -6x + 4 1/3-3x
allsm [11]

The answer is -9x + 6 2/3.

6 0
3 years ago
Pls help me .question no 14
Alex_Xolod [135]

Question 14, Part (i)

Focus on quadrilateral ABCD. The interior angles add to 360 (this is true for any quadrilateral), so,

A+B+C+D = 360

A+90+C+90 = 360

A+C+180 = 360

A+C = 360-180

A+C = 180

Since angles A and C add to 180, this shows they are supplementary. This is the same as saying angles 2 and 3 are supplementary.

==================================================

Question 14, Part (ii)

Let

x = measure of angle 1

y = measure of angle 2

z = measure of angle 3

Back in part (i) above, we showed that y + z = 180

Note that angles 1 and 2 are adjacent to form a straight line, so we can say

x+y = 180

-------

We have the two equations x+y = 180 and y+z = 180 to form this system of equations

\begin{cases}x+y = 180\\y+z = 180\end{cases}

Which is really the same as this system

\begin{cases}x+y+0 = 180\\0+y+z = 180\end{cases}

The 0s help align the y terms up. Subtracting straight down leads to the equation x-z = 0 and we can solve to get x = z. Therefore showing that angle 1 and angle 3 are congruent. We could also use the substitution rule to end up with x = z as well.

4 0
4 years ago
Other questions:
  • How many cubic feet of water can the following in ground swimming pool hold
    9·1 answer
  • 4x + 8y =40 when y=0.8?
    13·1 answer
  • Ху<br> 3. (-4,-3) and (-2,-7)<br> Slope
    10·1 answer
  • Is -94 a rational number
    15·1 answer
  • The price of a stock is $3.17 per share. what is the greatest number of whole shares mr. smith can buy with $200?
    10·2 answers
  • How do you give brainiest
    5·1 answer
  • What is the arc length of a circle that has a 6inch radius and a central angle that is 65 degrees? Use 3.14 for pi and round you
    13·1 answer
  • I WILL MARK BRINLIEST
    15·1 answer
  • The number of cookies Natalie can bake varies directly with the time she
    5·2 answers
  • Determine whether each pair of expressions is equivalent. Show your work. <br> 2(x-y) and 2x - 2y
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!