If the perimeter of the window is 16 ft, the value of x is 8,4 ft * 4,2 ft, so that the greatest possible amount of light is admitted.
<h3>Explanation:
</h3>
Semicircle is a one-dimensional locus of points that forms half of a circle. The full arc of a semicircle always measured as 180°. Whereas a rectangle is a quadrilateral with four right angles.
The greatest possible amount of light will be admitted if the are of the window is maximum.
Let x denote as half the width of rectangle, therefore x is the radius of semicircle and let y as the height of the rectangle.
Window perimeter
![2x+2y+\frac{1}{2} (2x\pi) = 2y + (2+\pi)x](https://tex.z-dn.net/?f=2x%2B2y%2B%5Cfrac%7B1%7D%7B2%7D%20%282x%5Cpi%29%20%3D%202y%20%2B%20%282%2B%5Cpi%29x)
Therefore
![30 = 2y+(2+\pi)x](https://tex.z-dn.net/?f=30%20%3D%202y%2B%282%2B%5Cpi%29x)
![y=\frac{30-(2+\pi)x}{2} =15-(1+\frac{\pi}{2})x](https://tex.z-dn.net/?f=y%3D%5Cfrac%7B30-%282%2B%5Cpi%29x%7D%7B2%7D%20%3D15-%281%2B%5Cfrac%7B%5Cpi%7D%7B2%7D%29x)
Window area is
A = area of rectangle + area of semicircle
Then by substitute the value of y we get
![A(x)=2x[15-(1+\frac{\pi}{2})x] + \frac{\pi x^2}{2} \\A(x)=30x-2x(1+\frac{\pi}{2})x + \frac{\pi x^2}{2} \\A(x)=30x-2x^2-\pi x^2+ \frac{\pi x^2}{2} \\A(x)=30x-(2+\frac{\pi }{2})x^2](https://tex.z-dn.net/?f=A%28x%29%3D2x%5B15-%281%2B%5Cfrac%7B%5Cpi%7D%7B2%7D%29x%5D%20%2B%20%5Cfrac%7B%5Cpi%20x%5E2%7D%7B2%7D%20%5C%5CA%28x%29%3D30x-2x%281%2B%5Cfrac%7B%5Cpi%7D%7B2%7D%29x%20%2B%20%5Cfrac%7B%5Cpi%20x%5E2%7D%7B2%7D%20%5C%5CA%28x%29%3D30x-2x%5E2-%5Cpi%20x%5E2%2B%20%5Cfrac%7B%5Cpi%20x%5E2%7D%7B2%7D%20%20%5C%5CA%28x%29%3D30x-%282%2B%5Cfrac%7B%5Cpi%20%7D%7B2%7D%29x%5E2)
We need maximizing A(x) to find x value, for which it is maximum. Therefore we will equate the A'(x) is equal to zero.
![A'(x) = 30-2(2+\frac{\pi }{2} ) x = 30-(4+ \pi)x\\A'(x)=0 \\30-(4+ \pi) x = 0\\30 = (4+ \pi)x\\x = \frac{30}{4+ \pi} = 4.2\\](https://tex.z-dn.net/?f=A%27%28x%29%20%3D%2030-2%282%2B%5Cfrac%7B%5Cpi%20%7D%7B2%7D%20%29%20x%20%3D%2030-%284%2B%20%5Cpi%29x%5C%5CA%27%28x%29%3D0%20%5C%5C30-%284%2B%20%5Cpi%29%20x%20%3D%200%5C%5C30%20%3D%20%284%2B%20%5Cpi%29x%5C%5Cx%20%3D%20%5Cfrac%7B30%7D%7B4%2B%20%5Cpi%7D%20%3D%204.2%5C%5C)
The condition of domain are x>0, y>0, and A(x)>0
Therefore the domain is ![x E (0,\frac{15}{1+\frac{\pi}{2} } )](https://tex.z-dn.net/?f=x%20E%20%280%2C%5Cfrac%7B15%7D%7B1%2B%5Cfrac%7B%5Cpi%7D%7B2%7D%20%7D%20%29)
We will find the value of A at x=0,
and x = \frac{30}{4+\pi}
We find that A(0) = 0
![A(\frac{30}{4+\pi} ) = A(4,2) = 63\\A(\frac{15}{1+\frac{\pi}{2} } ) =53.5\\](https://tex.z-dn.net/?f=A%28%5Cfrac%7B30%7D%7B4%2B%5Cpi%7D%20%29%20%3D%20A%284%2C2%29%20%3D%2063%5C%5CA%28%5Cfrac%7B15%7D%7B1%2B%5Cfrac%7B%5Cpi%7D%7B2%7D%20%7D%20%29%20%3D53.5%5C%5C)
Window area is maximum when ![x = \frac{30}{4+ \pi}](https://tex.z-dn.net/?f=x%20%3D%20%5Cfrac%7B30%7D%7B4%2B%20%5Cpi%7D)
When
, by using ![Eqn(1)y = 15-(1+\frac{\pi}{2} )*(\frac{30}{4+\pi} ) = \frac{30}{4+\pi}](https://tex.z-dn.net/?f=Eqn%281%29y%20%3D%2015-%281%2B%5Cfrac%7B%5Cpi%7D%7B2%7D%20%29%2A%28%5Cfrac%7B30%7D%7B4%2B%5Cpi%7D%20%29%20%3D%20%5Cfrac%7B30%7D%7B4%2B%5Cpi%7D)
Therefore maximum light is admitted through the window.
When radius of semi-circular part is ![\frac{30}{4+\pi} = 4.2 ft](https://tex.z-dn.net/?f=%5Cfrac%7B30%7D%7B4%2B%5Cpi%7D%20%3D%204.2%20ft)
Therefore the dimensions of the rectangular part of the window are 8,4 ft * 4,2 ft
Learn more about semicircle brainly.com/question/11825753
#LearnWithBrainly