1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dimulka [17.4K]
3 years ago
10

Round 716,487,250 to the nearest million.

Mathematics
1 answer:
IRINA_888 [86]3 years ago
6 0
7 million because 1 is closer to 7 than to 8
You might be interested in
The interval for which is non real is
scZoUnD [109]

Answer:

c

Step-by-step explanation:

it is non real if x²-36<0

x²<36

|x|<6

so -6<x<6

7 0
3 years ago
Evaluate the limit
wel

We are given with a limit and we need to find it's value so let's start !!!!

{\quad \qquad \blacktriangleright \blacktriangleright \displaystyle \sf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}}

But , before starting , let's recall an identity which is the <em>main key</em> to answer this question

  • {\boxed{\bf{a^{2}-b^{2}=(a+b)(a-b)}}}

Consider The limit ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}}

Now as directly putting the limit will lead to <em>indeterminate form 0/0.</em> So , <em>Rationalizing</em> the <em>numerator</em> i.e multiplying both numerator and denominator by the <em>conjugate of numerator </em>

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}\times \dfrac{\sqrt{x}+\sqrt{3\sqrt{x}-2}}{\sqrt{x}+\sqrt{3\sqrt{x}-2}}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-\sqrt{3\sqrt{x}-2})(\sqrt{x}+\sqrt{3\sqrt{x}-2})}{(x^{2}-4^{2})(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Using the above algebraic identity ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x})^{2}-(\sqrt{3\sqrt{x}-2})^{2}}{(x-4)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-(3\sqrt{x}-2)}{(x-4)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-3\sqrt{x}+2}{\{(\sqrt{x})^{2}-2^{2}\}(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-3\sqrt{x}-2}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , here we <em>need</em> to <em>eliminate (√x-2)</em> from the denominator somehow , or the limit will again be <em>indeterminate </em>,so if you think <em>carefully</em> as <em>I thought</em> after <em>seeing the question</em> i.e what if we <em>add 4 and subtract 4</em> in <em>numerator</em> ? So let's try !

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-3\sqrt{x}-2+4-4}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(x-4)+2+4-3\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , using the same above identity ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)(\sqrt{x}+2)+6-3\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)(\sqrt{x}+2)+3(2-\sqrt{x})}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , take minus sign common in <em>numerator</em> from 2nd term , so that we can <em>take (√x-2) common</em> from both terms

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)(\sqrt{x}+2)-3(\sqrt{x}-2)}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , take<em> (√x-2) common</em> in numerator ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)\{(\sqrt{x}+2)-3\}}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Cancelling the <em>radical</em> that makes our <em>limit again and again</em> <em>indeterminate</em> ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{\cancel{(\sqrt{x}-2)}\{(\sqrt{x}+2)-3\}}{\cancel{(\sqrt{x}-2)}(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}+2-3)}{(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-1)}{(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , <em>putting the limit ;</em>

{:\implies \quad \sf \dfrac{\sqrt{4}-1}{(\sqrt{4}+2)(4+4)(\sqrt{4}+\sqrt{3\sqrt{4}-2})}}

{:\implies \quad \sf \dfrac{2-1}{(2+2)(4+4)(2+\sqrt{3\times 2-2})}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(2+\sqrt{6-2})}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(2+\sqrt{4})}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(2+2)}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(4)}}

{:\implies \quad \sf \dfrac{1}{128}}

{:\implies \quad \bf \therefore \underline{\underline{\displaystyle \bf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}=\dfrac{1}{128}}}}

3 0
2 years ago
Read 2 more answers
Gia opened two savings accounts at two diffrent banks. One account earns an annual 3.4% simple interest, and the other earns hal
dsp73

Interest from first account is :

I_1 = \dfrac{p\times r \times t}{100}\\\\I_1 = \dfrac{509\times 3.4\times 3}{100}\\\\I_1 =\$ 51.918

Interest form second account is :

I_2 = \dfrac{p\times r\times t}{100}\\\\I_2 = \dfrac{509\times 1.7\times 3}{100}\\\\I_2 =  \$25.959

So, total interest is :

I = I_1 + I_2 \\\\I = 51.918 + 25.959\\\\I = \$77.877

Therefore, total interest is $77.877 .

5 0
3 years ago
The goals against average (A) for a professional hockey goalie is determined using the formula A = 60 a equals 60 left-parenthes
Marina CMI [18]

Answer:

Option 1 - \frac{At}{60}=g

Step-by-step explanation:

Given : The goals against average (A) for a professional hockey goalie is determined using the formula A=60(\frac{g}{t} ). In the formula, g represents the number of goals scored against the goalie and t represents the time played, in minutes.

To find : Which is an equivalent equation solved for g?

Solution :

Solve the formula in terms of g,

A=60(\frac{g}{t})

Multiply both side by t,

At=60g

Divide both side by 60,

\frac{At}{60}=\frac{60g}{60}

\frac{At}{60}=g

Therefore, option 1 is correct.

4 0
3 years ago
Read 2 more answers
Please help with the answer for 7/9 -1/3=
Levart [38]

Answer:

4/9 is the answer

Hope it correct and it helps

6 0
3 years ago
Read 2 more answers
Other questions:
  • The sum of two consecutive odd integers is 20 less than four times the smaller of the two integers. Which the following equation
    7·1 answer
  • Use implicit differentiation to find dy/dx.<br> ln xy + 5x = 30. Please write out the steps.
    12·1 answer
  • Mr. Li has a bag of Skittles. There are 5 blue Skittles, 3
    6·2 answers
  • What is 850% as a fraction in simplest form
    12·2 answers
  • Please help me ! Is it 1 or 3
    13·2 answers
  • Could someone explain how to solve this
    5·2 answers
  • Please give me the correct answer.Only answer if you're very good at math.Please don't put a link to a website.​
    8·1 answer
  • How do you do this problems?
    10·1 answer
  • Solve for xxxx plsss​
    13·1 answer
  • The volume of a cube is 64 cubic feet. What are the lengths of the side of the cube?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!