Answer:
Shopper spend $3 on Apples, $4 on Grapes and $3.5 on Oranges
Step-by-step explanation:
Cost of one pound of Apple = $2x
Cost of one pound of Grapes = $(6x-5)
Cost of one pound of Oranges = $(x+2)
A shopper purchases one pound each of apples, grapes, and oranges and spends $10.50.
It can be written as: 
We need to find how much the shopper spend on each fruit.
First we need to find value of x by solving equation

Solving:

The value of x is: x=1.5
Now finding cost of one pound each fruit by putting x=1.5
Cost of one pound of Apple = $2x = 2(1.5) = $3
Cost of one pound of Grapes = $(6x-5) = (6(1.5)-5)= $4
Cost of one pound of Oranges = $(x+2)=(1.5+2)=$3.5
So,
Cost of one pound of Apple = $3
Cost of one pound of Grapes = $4
Cost of one pound of Oranges = $3.5
So, shopper spend $3 on apples, $4 on Grapes and $3.5 on Oranges
Answer:
(x + 3)² + (y – 4)² = 1
Step-by-step explanation:
(x – h)² + (y – k)² = r².
Where (h, k) is the center of the circle, and r is the radius of the circle.
For question 9 - It is stating that AE is equal to 38. So the length of the entire line is 38. We then need to look at which figures are actually useful to us, which in this case is AC which is 10. Therefore the answer is as simple as 38-10, which gives us an answer of 28 for the other half of the line, notated as CE.
Answer:
B. There is an association because the value 0.15 is not similar to the value 0.55
Step-by-step explanation:
Based on the above picture, for the nutritionist to determine whether there is an association between where food is prepared and the number of calories the food contains, there must be an association between two categorical variables.
The conditions that satisfy whether there exists an association between conditional relative frequencies are:
1. When there is a bigger difference in the conditional relative frequencies, the stronger the association between the variables.
2. When the conditional relative frequencies are nearly equal for all categories, there may be no association between the variables.
For the given conditional relative frequency, we can see that there exists a significant difference between the columns of the table in the picture because 0.15 is significantly different from 0.55 and 0.85 is significantly different from 0.45
We can conclude that there is an association because the value 0.15 is not similar to the value 0.55
Answer:
The y-intercept is at (0,2)
Step-by-step explanation:
If you loom at the vertical line in bold on the graph, you will see that the blue line is going through the y-axis.