Answer:
20
Step-by-step explanation:
Answer:
C. Altitude
Step-by-step explanation:
A prism is a polyhedron, with two parallel faces called bases.
The numbers are 15, 17 and 19
Answer:
Forces in our Universe
Step-by-step explanation:
a)
First of all we have,

and,

We need to define a function that allows us to find said change based on r, so one of the functions that shows that change is,

That is,

For this case F is a conservative field and the line integral is independent of the path. Thus, defining
and
. So the amount of work on the movement of the object from P1 to P2 is,




2) The gravitational force field is given by,

The maximum distance from the earth to the sun is
km and the minimum distance is
km. The mass values of the bodies are given by m =
kg, M =
kg and the constant G is

In this way we raise the problem like this,



