I assume you're asked to solve
4 cos²(<em>x</em>) - 7 cos(<em>x</em>) + 3 = 0
Factor the left side:
(4 cos(<em>x</em>) - 3) (cos(<em>x</em>) - 1) = 0
Then either
4 cos(<em>x</em>) - 3 = 0 <u>or</u> cos(<em>x</em>) - 1 = 0
cos(<em>x</em>) = 3/4 <u>or</u> cos(<em>x</em>) = 1
From the first case, we get
<em>x</em> = cos⁻¹(3/4) + 2<em>nπ</em> <u>or</u> <em>x</em> = -cos⁻¹(3/4) + 2<em>nπ</em>
and from the second,
<em>x</em> = <em>nπ</em>
where <em>n</em> is any integer.

The fixed cost is $150, while the per-student cost is $6.
First step: name the sides according to geometry standards, namely, the sides are named the same lowercase letter as the opposing angle. A revised diagram is shown.
Second step: we need to know the relationships of the trigonometric functions.
cosine(A)=cos(63) = adjacent / hypotenuse = AC/AB .................(1)
sine(A)=sin(63) = opposite / hypotenuse = CB/AB .......................(2)
We're given AB=7, so
using (1)
AC/AB=cos(63)
AC=ABcos(63)=7 cos(63) = 7*0.45399 = 3.17993 = 3.180 (to three dec. figures)
Using (2)
BC/AB=sin(63)
BC=ABsin(63) = 7 sin(63) = 7*0.89101 = 6.237 (to three dec. figures).
Answer:
60cm
Step-by-step explanation:
the length of other side = sqrt (square root) hypotenuse^2 - the length of thrid side^3 = sqrt 61^2 - 11^2 = sqrt 60^2 = 60