The midpoint of the line segment with endpoints at the given coordinates (-6,6) and (-3,-9) is 
<u>Solution:</u>
Given, two points are (-6, 6) and (-3, -9)
We have to find the midpoint of the segment formed by the given points.
The midpoint of a segment formed by
is given by:


Plugging in the values in formula, we get,

Hence, the midpoint of the segment is 
Answer:
-44
Step-by-step explanation:
12-7(8+6-6)
12-7(8)
12-56
-44
Answer:
10,404/334,084
Step-by-step explanation:
Given the polynomial
289r^2 - 102r + c
We are to find the value of c that will make it a perfect square
Divide through by 289
289r²/289 - 102r/289 + c/289
Half of the coefficient of r is 1/2(102/289)
Half of the coefficient of r = 102/578
Square the result
r² = (102/578)²
r² = 10,404/334,084
Hence the required constant is 10,404/334,084
Answer: A = 112km^2
Explanation:
A = L x W
A = 14km x 8km
A = 112km^2