The greatest number is 28 people
Answer:
.
Step-by-step explanation:
How many unique combinations are possible in total?
This question takes 5 objects randomly out of a bag of 50 objects. The order in which these objects come out doesn't matter. Therefore, the number of unique choices possible will the sames as the combination
.
How many out of that 2,118,760 combinations will satisfy the request?
Number of ways to choose 2 red candies out a batch of 28:
.
Number of ways to choose 3 green candies out of a batch of 8:
.
However, choosing two red candies out of a batch of 28 red candies does not influence the number of ways of choosing three green candies out of a batch of 8 green candies. The number of ways of choosing 2 red candies and 3 green candies will be the product of the two numbers of ways of choosing
.
The probability that the 5 candies chosen out of the 50 contain 2 red and 3 green will be:
.
Answer:
You'd use grams because the strawberry is so small, and kilograms are emasuring bigger things.
Step-by-step explanation:
The dimension that would give the maximum area is 20.8569
<h3>How to solve for the maximum area</h3>
Let the shorter side be = x
Perimeter of the semi-circle is πx
Twice the Length of the longer side
![[70-(\pi )x -x]](https://tex.z-dn.net/?f=%5B70-%28%5Cpi%20%29x%20-x%5D)
Length = ![[70-(1+\pi )x]/2](https://tex.z-dn.net/?f=%5B70-%281%2B%5Cpi%20%29x%5D%2F2)
Total area =
area of rectangle + area of the semi-circle.
Total area =
![x[[70-(1+\pi )x]/2] + [(\pi )(x/2)^2]/2](https://tex.z-dn.net/?f=x%5B%5B70-%281%2B%5Cpi%20%29x%5D%2F2%5D%20%2B%20%5B%28%5Cpi%20%29%28x%2F2%29%5E2%5D%2F2)
When we square it we would have
![70x +[(\pi /4)-(1+\pi)]x^2](https://tex.z-dn.net/?f=70x%20%2B%5B%28%5Cpi%20%2F4%29-%281%2B%5Cpi%29%5Dx%5E2)
This gives
![70x - [3.3562]x^2](https://tex.z-dn.net/?f=70x%20-%20%5B3.3562%5Dx%5E2)
From here we divide by 2

The maximum side would be at

This gives us 20.8569
Read more on areas and dimensions here:
brainly.com/question/19819849
#SPJ1
False. If the area is 0 that means there is nothing there, therefore the area of a polygon cannot be zero.