Answer:
Soma
Explanation:
Soma is the site at which the error of integrating an excitatory signal with other incoming signals occurred. Another name for Soma is perikaryon.
This signal integrates chemical encoding of signal transduction from all other incoming signals and this signal is not integrated properly with other incoming signals to that neuron.
Explanation:
Hormone production and release are primarily controlled by negative feedback. In negative feedback systems, a stimulus causes the release of a substance whose effects then inhibit further release. In this way, the concentration of hormones in blood is maintained within a narrow range.
A theory that states that only the organism with traits that are useful to the environment survive. For example, short-neck giraffes would’ve died out years ago as they can’t reach the trees nor eat grass on the ground.
Answer:
False.
Explanation:
Neurotransmitter release occurs from the nervous terminal or varicosities in the neuronal axon. When an action potential reaches the nervous terminal, the neurotransmitter is released by exocytose. The molecule binds to its receptor in the postsynaptic neuron, triggering an answer. As long as the signal molecule is in the synaptic space, it keeps linking to its receptor and causing a postsynaptic response. To stop this process the neurotransmitter must be taken out from the synaptic space. There are two mechanisms by which the neurotransmitter can be eliminated:
• Enzymatic degradation/deactivation: There are specific enzymes in the synaptic space, which are in charge of inactivating the neurotransmitter by breaking or degrading it. The enzyme acetylcholinesterase prevents ACh from continuing to stimulate contraction.
• Reuptake: Receptors located in the presynaptic membrane can capture de molecule to store it back in new vesicles for posterior use. These transporters are active transport proteins that easily recognize the neurotransmitter.