1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
suter [353]
3 years ago
15

I just need to state the property and justify with simplify.​

Mathematics
1 answer:
kykrilka [37]3 years ago
4 0

Answer:

Step-by-stnxnep explanation:

You might be interested in
Q/19 &lt; 4<br><br> pls be correct if you type it !!!!
babymother [125]

Answer:

q<76

Step-by-step explanation:

hope this is the answer you were looking for!

3 0
3 years ago
What is the least common multiple of 4, 6, and 12?
Afina-wow [57]

Answer:

12

Step-by-step explanation:

5 0
3 years ago
Read 2 more answers
Square root of 2tanxcosx-tanx=0
kobusy [5.1K]
If you're using the app, try seeing this answer through your browser:  brainly.com/question/3242555

——————————

Solve the trigonometric equation:

\mathsf{\sqrt{2\,tan\,x\,cos\,x}-tan\,x=0}\\\\ \mathsf{\sqrt{2\cdot \dfrac{sin\,x}{cos\,x}\cdot cos\,x}-tan\,x=0}\\\\\\ \mathsf{\sqrt{2\cdot sin\,x}=tan\,x\qquad\quad(i)}


Restriction for the solution:

\left\{ \begin{array}{l} \mathsf{sin\,x\ge 0}\\\\ \mathsf{tan\,x\ge 0} \end{array} \right.


Square both sides of  (i):

\mathsf{(\sqrt{2\cdot sin\,x})^2=(tan\,x)^2}\\\\ \mathsf{2\cdot sin\,x=tan^2\,x}\\\\ \mathsf{2\cdot sin\,x-tan^2\,x=0}\\\\ \mathsf{\dfrac{2\cdot sin\,x\cdot cos^2\,x}{cos^2\,x}-\dfrac{sin^2\,x}{cos^2\,x}=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left(2\,cos^2\,x-sin\,x \right )=0\qquad\quad but~~cos^2 x=1-sin^2 x}

\mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\cdot (1-sin^2\,x)-sin\,x \right]=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2-2\,sin^2\,x-sin\,x \right]=0}\\\\\\ \mathsf{-\,\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}\\\\\\ \mathsf{sin\,x\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}


Let

\mathsf{sin\,x=t\qquad (0\le t


So the equation becomes

\mathsf{t\cdot (2t^2+t-2)=0\qquad\quad (ii)}\\\\ \begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{2t^2+t-2=0} \end{array}


Solving the quadratic equation:

\mathsf{2t^2+t-2=0}\quad\longrightarrow\quad\left\{ \begin{array}{l} \mathsf{a=2}\\ \mathsf{b=1}\\ \mathsf{c=-2} \end{array} \right.


\mathsf{\Delta=b^2-4ac}\\\\ \mathsf{\Delta=1^2-4\cdot 2\cdot (-2)}\\\\ \mathsf{\Delta=1+16}\\\\ \mathsf{\Delta=17}


\mathsf{t=\dfrac{-b\pm\sqrt{\Delta}}{2a}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{2\cdot 2}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{4}}\\\\\\ \begin{array}{rcl} \mathsf{t=\dfrac{-1+\sqrt{17}}{4}}&\textsf{ or }&\mathsf{t=\dfrac{-1-\sqrt{17}}{4}} \end{array}


You can discard the negative value for  t. So the solution for  (ii)  is

\begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{t=\dfrac{\sqrt{17}-1}{4}} \end{array}


Substitute back for  t = sin x.  Remember the restriction for  x:

\begin{array}{rcl} \mathsf{sin\,x=0}&\textsf{ or }&\mathsf{sin\,x=\dfrac{\sqrt{17}-1}{4}}\\\\ \mathsf{x=0+k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=arcsin\bigg(\dfrac{\sqrt{17}-1}{4}\bigg)+k\cdot 360^\circ}\\\\\\ \mathsf{x=k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=51.33^\circ +k\cdot 360^\circ}\quad\longleftarrow\quad\textsf{solution.} \end{array}

where  k  is an integer.


I hope this helps. =)

3 0
3 years ago
What is y=-5x75+23 divided by 2
mina [271]

Answer:

Exact Form

Y = -727/2

Decimal Form

y = -363.5

Mixed Number Form

y = -363 1/2

Step-by-step explanation:

3 0
4 years ago
Read 2 more answers
Find the inverse of this 3x3 matrix. [1 5 2]
MissTica
Lets say the 3x3 Matrix is 

M =   [1   5   2 ]
         [1   1   7 ]
         [0  -3   7 ]

We apply the Gauss-Jordan elimination method (Procedure and result shown in the image below)

5 0
3 years ago
Other questions:
  • Find the perpendicular distance from the point p(2, 7, 9) to the xy-plane.
    5·1 answer
  • 5-2xless than or equal to -3=
    13·1 answer
  • I really need some help on this question please!
    7·1 answer
  • Why would a money market account require a minimum balance?
    5·1 answer
  • Which of the interpretation for given expression is correct? 5(3x - 4)2
    8·2 answers
  • Which is one way to check 102 ÷ 6 = 17
    9·2 answers
  • Solve this system using elimination.<br><br> 3x+4y=5<br> 2x+3y=4<br><br> Show work please
    9·1 answer
  • I’ll mark brainlist
    12·2 answers
  • The following are all angle measures (in degrees, rounded to the nearest tenth) whose tangent is 2.62.62, point, 6. Which is the
    12·2 answers
  • Simplify<br><br> 14 +{ -2 + 3 [ 1 +3 ( -6 -2 ) ] }
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!