1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zimovet [89]
3 years ago
7

Square root of 2tanxcosx-tanx=0

Mathematics
1 answer:
kobusy [5.1K]3 years ago
3 0
If you're using the app, try seeing this answer through your browser:  brainly.com/question/3242555

——————————

Solve the trigonometric equation:

\mathsf{\sqrt{2\,tan\,x\,cos\,x}-tan\,x=0}\\\\ \mathsf{\sqrt{2\cdot \dfrac{sin\,x}{cos\,x}\cdot cos\,x}-tan\,x=0}\\\\\\ \mathsf{\sqrt{2\cdot sin\,x}=tan\,x\qquad\quad(i)}


Restriction for the solution:

\left\{ \begin{array}{l} \mathsf{sin\,x\ge 0}\\\\ \mathsf{tan\,x\ge 0} \end{array} \right.


Square both sides of  (i):

\mathsf{(\sqrt{2\cdot sin\,x})^2=(tan\,x)^2}\\\\ \mathsf{2\cdot sin\,x=tan^2\,x}\\\\ \mathsf{2\cdot sin\,x-tan^2\,x=0}\\\\ \mathsf{\dfrac{2\cdot sin\,x\cdot cos^2\,x}{cos^2\,x}-\dfrac{sin^2\,x}{cos^2\,x}=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left(2\,cos^2\,x-sin\,x \right )=0\qquad\quad but~~cos^2 x=1-sin^2 x}

\mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\cdot (1-sin^2\,x)-sin\,x \right]=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2-2\,sin^2\,x-sin\,x \right]=0}\\\\\\ \mathsf{-\,\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}\\\\\\ \mathsf{sin\,x\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}


Let

\mathsf{sin\,x=t\qquad (0\le t


So the equation becomes

\mathsf{t\cdot (2t^2+t-2)=0\qquad\quad (ii)}\\\\ \begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{2t^2+t-2=0} \end{array}


Solving the quadratic equation:

\mathsf{2t^2+t-2=0}\quad\longrightarrow\quad\left\{ \begin{array}{l} \mathsf{a=2}\\ \mathsf{b=1}\\ \mathsf{c=-2} \end{array} \right.


\mathsf{\Delta=b^2-4ac}\\\\ \mathsf{\Delta=1^2-4\cdot 2\cdot (-2)}\\\\ \mathsf{\Delta=1+16}\\\\ \mathsf{\Delta=17}


\mathsf{t=\dfrac{-b\pm\sqrt{\Delta}}{2a}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{2\cdot 2}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{4}}\\\\\\ \begin{array}{rcl} \mathsf{t=\dfrac{-1+\sqrt{17}}{4}}&\textsf{ or }&\mathsf{t=\dfrac{-1-\sqrt{17}}{4}} \end{array}


You can discard the negative value for  t. So the solution for  (ii)  is

\begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{t=\dfrac{\sqrt{17}-1}{4}} \end{array}


Substitute back for  t = sin x.  Remember the restriction for  x:

\begin{array}{rcl} \mathsf{sin\,x=0}&\textsf{ or }&\mathsf{sin\,x=\dfrac{\sqrt{17}-1}{4}}\\\\ \mathsf{x=0+k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=arcsin\bigg(\dfrac{\sqrt{17}-1}{4}\bigg)+k\cdot 360^\circ}\\\\\\ \mathsf{x=k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=51.33^\circ +k\cdot 360^\circ}\quad\longleftarrow\quad\textsf{solution.} \end{array}

where  k  is an integer.


I hope this helps. =)

You might be interested in
Alexander spends $450 a month on bills. Of the $450, 3
andrew11 [14]

how much is for electricity?

8 0
3 years ago
What are the coordinates of point A?
Virty [35]
(-4,-3) need 20 characters
3 0
3 years ago
What is the length of the hypotenuse of the triangle when x = 7?<br> 5x +4<br> 4x
Anastasy [175]

Answer:

48.01

Step-by-step explanation:

5(7)+4= 39

4(7)=28

39²+ 28²= 2305

√2305 = 48.01

4 0
3 years ago
Which expression is not a polynomial?<br> x³<br> x² - 2x<br> x³ +1<br> 12x
zaharov [31]

Answer:

12x

Step-by-step explanation:

It has no exponent so it is not a polynomial

3 0
1 year ago
Y=x+4, 2x+y=13 solve the following system of equation. Please help
alexandr1967 [171]
Well you have to subtract -2 to both sides and it well look like Y= -2+13 and then y=x+4
7 0
3 years ago
Other questions:
  • Please give me a detailed explanation on how to solve this (Thank you!!).
    15·1 answer
  • Solve for y.<br> C=4(y-8)
    13·1 answer
  • What would be the best way to solve an inequality the quickest. For example 6x is less than 21.​
    12·1 answer
  • What is the value of y? 2y y+10 50 all in degrees and in different angles of a triangle
    5·2 answers
  • A section of a deck is shaped like a trapezoid. For this section, the length of one base is 23 feet, and the
    11·1 answer
  • Enter the sum of numbers as a product of their GCF.
    15·1 answer
  • How do I solve this inequality?
    8·2 answers
  • SUPER EASY! PLEASE HELP, I will mark brainliest
    7·2 answers
  • What is -1/8 - 6 7/8​
    9·2 answers
  • Really need help with Dilations in the Coordinate Plane
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!