Answer:
-Sensors in the brain detect a lack of oxygen.
-The muscles in his body need more energy and therefore more oxygen.
Explanation:
-Sensors in the brain detect a lack of oxygen.
-The muscles in his body need more energy and therefore more oxygen.
-The body has too little carbon dioxide to maintain function.
-The body is using carbon dioxide instead of oxygen to make energy.
-Blood pressure has decreased, so less blood is being pumped to the muscles.
<em>The correct answer would be that </em><em>sensors in the brain detect a lack of oxygen</em><em> and t</em><em>he muscles in the body of Jon need more energy and therefore, more oxygen.</em>
At sea level, the atmospheric pressure easily allow oxygen to permeate the cells of the lung and diffuse into the blood. At high altitudes, air pressure is generally lower and permeation/diffusion through the cells of the lung into the blood becomes difficult.
<u>Without adequate oxygen, the body cannot generate energy needed for physical activities of muscles. Consequently, the sensors in the brain detect a lack of oxygen and the body system reacts by breathing heavily to compensate for the oxygen shortage.</u>
Answer:
A. 2 cells are made from one cell
Answer:
The correct pair is A: "apicomplexans—parasites of animals"
Explanation:
- Euglenophyta is a group of unicellular, eukaryotic organisms. They are small, free-living forms, or parasites that present different feeding mechanisms and behaviors, such as heterotrophy, autotrophy, or mixotrophy.
- Dinoflagellates are unicellular, flagellated, free-living protists that might form colonies. Most of them are autotrophic organisms but some of them are heterotrophic, or mixotrophic. In these last cases, dinoflagellates can feed on other dinoflagellates, protozoans, or diatoms. They can also be parasites.
- Entamoebas are endoparasitic organisms with no mitochondria as an adaptation of living in environments with low oxygen concentration.
- Apicomplexa is a unicellular, protist group. They have medical and economic importance as they are<u> animals</u> and human parasites. They have an apical complex that helps them to fixate to the host cell and release a substance that provokes an invagination in the host membrane. This invagination allows the parasite to get into the host cell.