Identify the length of both bases. The bases are the two Identify parallel sides of the trapezoid.
12 and 6 are our bases.
...Add the lengths of the bases.
12+6 = 18
..Multiply the sum of the lengths of the bases by the height. ...Divide the result by two.
18×5= 90
90÷2= 45
The area is 45.
The necessary solution that would be used to fill in the blanks would be
- perpendicular
- is the center of
- Circumscribed
<h3>How to find the center of the circle</h3>
The way that Quintin would be able to do this would be the center of the circumferential triangle is equidistant from the vertices.
The center is going to be the intersection of the bisectors of the three sides of the given triangle.
Read more on the center of a circle here:
brainly.com/question/25938130
#SPJ1
perpendicular bisectors, is the center of, circumscribed
Answer: 2b+3
Combine like terms which are 5 and -2