A horse trots in a circle around its trainer at the end of a 22-foot-long rope. Find the area of the circle that is swept out. R
ound to the nearest square foot.
ft2
2 answers:
Answer:
Step-by-step explanation:
The horse trots in a circle around its trainer at the end of a 22-foot-long rope. This means that the radius of the circle is 22 feet.
The formula for determining the area of a circle is expressed as
Area = πr²
Where r represents the radius of the circle.
π is a constant whose value 3.14
Therefore,
Area = 3.14 × 22² = 1519.76
Rounding to the nearest foot, the area of the circle is
1520 feet²
Answer:
The area that is swept out by the horse is 69 feet square.
Step-by-step explanation:
The distance between the horse and the trainer is the radius of the circle form.
Therefore radius = 22 feet
π = 22/7 (a constants)
Area of a circle = πr^2
Area that is swept out = 22/7 × 22 × 22
Area = 69.1429
You might be interested in
The answer is the first one BC ~ CD
Ok done. Thank to me:>
Step-by-step explanation:
It doesn't matter what order they are drawn in, so youi have a combination problem
26C5
My calculator gives the answer directly,
It is 65780
Answer:
y-6=4(x+3)
Step-by-step explanation:
Answer:
x2+y2-10x-10y+25=0