Answer:
0.08
Step-by-step explanation:
Answer: x = 10 y=20
Step-by-step explanation:
You can answer this question by plugging in each equation:
2x=y, x+y=30. Let us plug y as 2x in the second equation x+y=30
x+2x= 30
3x= 30
x=10
After we found x we can then find y by plugging the 10 for x.
2(10) = y
y =20
or you could plug in the other equation
10+y=30
subtract 10 from 30 and we get 20
to double check we can plug in both numbers
2(10) = 20 which is correct
and 10 + 20 = 30 which is correct

To find the gradient of the tangent, we must first differentiate the function.

The gradient at x = 0 is given by evaluating f'(0).

The derivative of the function at this point is negative, which tells us <em>the function is decreasing at that point</em>.
The tangent to the line is a straight line, so we will have a linear equation of the form y = mx + c. We know the gradient, m, is equal to -1, so

Now we need to substitute a point on the tangent into this equation to find c. We know a point when x = 0 lies on here. To find the y-coordinate of this point we need to evaluate f(0).

So the point (0, -1) lies on the tangent. Substituting into the tangent equation:
Answer:
3,5
Step-by-step explanation:
the answer is 3,5
I hope this helps
Answer:
Step-by-step explanation:
We are to find the equation a line that passes through the point (8, 1) and which is perpendicular to a line whose equation is
.
We know that the slope of line which is perpendicular to another line is the negative reciprocal of the slope of the other line so it will be
.
Then, we will find the y-intercept of the line using the standard equation of a line:
Therefore, the equation of the line will be
.