Answer:
Hydrogen and electrons
Explanation:
Nicotinamide adenine dinucleotide (NAD) and flavin adenine dinucleotide (FAD) serve as reducing power during energy transfers. One NAD+ accepts one hydrogen ions and two electrons and becomes reduced into NADH. Likewise, FAD accepts two hydrogen ions and two electrons and is reduced into FADH2. Oxidation of NADH and FADH2 into NAD+ and FAD respectively releases both hydrogen ions and electrons.
For example, some of the energy of glucose released during glycolysis and Kreb's cycle is temporarily stored in the form of NADH and FADH2. Oxidation of NADH and FADH2 via electron transfer chain of mitochondria releases both electrons and hydrogen ions (protons). The protons are pumped across the inner mitochondrial membrane to generate the proton concentration gradient.
They are our bodies preferred source of energy for everything we do and before using carbohydrates for fuel, our bodies have to break these compounds down into simple sugars.
Answer:
the answer is body
Explanation:
because physical is something you can touch you cant touch any of the other terms with your fingers except bodys so that's the answer
Answer:
Because it was a dead language.
Explanation:
Nobody uses latin anymore.
The noncyclic pathway is a FLOW of electrons from water, to photosystem II, to PHOTOSYSTEM I to NADPH. Energy is released as ELECTRONS move through the first electron transfer chain. This energy pumps HYDROGEN IONS into the thylakoid compartment, and then they power the formation of ATP as they flow back out. Sunlight provides the energy needed to keep this cycle going.
----------------------------------------------------------------------------------------------------
- Luminous energy is trapped by chlorophyll in Photosystem II.
- When the pigment molecules absorb light, electrons provided by water molecules get in a higher energy level.
- The excited electrons go through the electron transport chain from Photosystem II to a less energetic level in photosystem I.
- <em>When the excited electrons leave photosystem II, they are replaced by new electrons extracted from the water molecules. </em>
- Luminous energy absorbed move the electrons from the photosystem I to another electron acceptor, from where they get transported again and used to produce NADPH molecules.
- <em>When electrons leave Photosystem I, they are replaced by new electrons coming from photosystem II. </em>
- When the water molecule breaks down, hydrogen ions remain in the thylakoid lumen, from where they are pumped to the stroma by the ATP synthase.
- The released energy is used to produce ATP molecules.
- Hydrogen ions go back from the stroma to the thylakoid compartment.
The final products are oxygen, ATP, and NADPH.
--------------------------------------------
Related Link: brainly.com/question/13592516?referrer=searchResults