To convert from moles to grams you divide by the molar mass of the element. To convert from grams to moles you X by the molar mass element
Answer:
We don't have the passage. A random sampling of surfactant uses includes:
- removal of oily materials from objects (clothes and dishes)
- forms remarkable structures called bubbles
- Assists in forming emulsions (e.g., mayonaise and paints)
Explanation:
The structure of a surfactant makes one end of a molecule hydrophilic and the other end hydrophobic. In water, they self-assemble into micelles, an arrangement in which the hydrophobic ends align towards the center, and the hydrophilic ends are pointed outwards to the water. This self-assembly is apparant when bubbles are made. The molecules quickly align themselves such that the hyrophilic ends are oriented inwards towards a thin layer of water and the hydrophobic ends are pointed outward to the air. This arrangement allows a mono-molecular sphere of water molecules to remain stable enough to float, reflect light, and please. These same properties allow the inverse to occur. Soap molecules surround a hydrophobic mass (e.g., the hamburger grease on your shirt) and solubilize it into small micelles which are then carried away in the surrounding water.
This lesson is the first in a three-part series that addresses a concept that is central to the understanding of the water cycle—that water is able to take many forms but is still water. This series of lessons is designed to prepare students to understand that most substances may exist as solids, liquids, or gases depending on the temperature, pressure, and nature of that substance. This knowledge is critical to understanding that water in our world is constantly cycling as a solid, liquid, or gas.
In these lessons, students will observe, measure, and describe water as it changes state. It is important to note that students at this level "...should become familiar with the freezing of water and melting of ice (with no change in weight), the disappearance of wetness into the air, and the appearance of water on cold surfaces. Evaporation and condensation will mean nothing different from disappearance and appearance, perhaps for several years, until students begin to understand that the evaporated water is still present in the form of invisibly small molecules." (Benchmarks for Science Literacy<span>, </span>pp. 66-67.)
In this lesson, students explore how water can change from a solid to a liquid and then back again.
<span>In </span>Water 2: Disappearing Water, students will focus on the concept that water can go back and forth from one form to another and the amount of water will remain the same.
Water 3: Melting and Freezing<span> allows students to investigate what happens to the amount of different substances as they change from a solid to a liquid or a liquid to a solid.</span>
The percent by mass of calcium hydroxide in the solution : 15.41%
<h3>Further explanation</h3>
The concentration of a substance can be expressed in several quantities such as moles, percent (%) weight/volume,), molarity, molality, parts per million (ppm) or mole fraction. The concentration shows the amount of solute in a unit of the amount of solvent.
Mass of solute (Ca(OH₂-Calcium hydroxide) : 28.5
Mass of solution = 185 g

Trick question: you just stated everything in the beakers.