![\bf \cfrac{(x-2)(x+3)}{2x+2}\implies \cfrac{x^2+x-6}{2x+2}~~ \begin{array}{llll} \leftarrow \textit{2nd degree polynomial}\\ \leftarrow \textit{1st degree polynomial} \end{array} \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{vertical asymptote}}{2x+2=0}\implies 2x=-2\implies x=-\cfrac{2}{2}\implies x=-1](https://tex.z-dn.net/?f=%5Cbf%20%5Ccfrac%7B%28x-2%29%28x%2B3%29%7D%7B2x%2B2%7D%5Cimplies%20%5Ccfrac%7Bx%5E2%2Bx-6%7D%7B2x%2B2%7D~~%20%5Cbegin%7Barray%7D%7Bllll%7D%20%5Cleftarrow%20%5Ctextit%7B2nd%20degree%20polynomial%7D%5C%5C%20%5Cleftarrow%20%5Ctextit%7B1st%20degree%20polynomial%7D%20%5Cend%7Barray%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Bvertical%20asymptote%7D%7D%7B2x%2B2%3D0%7D%5Cimplies%202x%3D-2%5Cimplies%20x%3D-%5Ccfrac%7B2%7D%7B2%7D%5Cimplies%20x%3D-1)
when the degree of the numerator is greater than the denominator's, then it has no horizontal asymptotes.
quick note:
when the degree of the numerator is 1 higher than the degree of the denominator, then it has an slant-asymptote, so this one has a slant-asymptote.
Answer:Andrew will pay $1100 in sales tax
Step-by-step explanation:
Andrew bought a new car for $32,000. The dealer gave him $10,000 for his trade-in. Sales tax is 5% but is only charged on the difference between the cost of the new car and the value of the trade-in. The value of the difference between the cost of the new car and the value of the trade-in would be
32000 - 10000 = $22000
Therefore, the amount that Andrew will pay in sales tax would be
5/100 × 22000 = 0.05 × 22000 = $1100
Answer:
45º
Step-by-step explanation:
alternate interior angles are congruent
x + 30 = 75
Subtract 30 from both sides
x = 45º
Answer:
Function 1 rate of change: 1/2
Function 2: 5/6
Function 2 has the greatest rate of change
Step-by-step explanation: