Circumference=2πr
=2*3.14*105
=659.4cm
1)
∠BAC = ∠NAC - ∠NAB = 144 - 68 = 76⁰
AB = 370 m
AC = 510 m
To find BC we can use cosine law.
a² = b² + c² -2bc*cos A
|BC|² = |AC|²+|AB|² - 2|AC|*|AB|*cos(∠BAC)
|BC|² = 510²+370² - 2*510*370*cos(∠76⁰) =
|BC| ≈ 553 m
2)
To find ∠ACB, we are going to use law of sine.
sin(∠BAC)/|BC| = sin(∠ACB)/|AB|
sin(76⁰)/553 m = sin(∠ACB)/370 m
sin(∠ACB)=(370*sin(76⁰))/553 =0.6492
∠ACB = 40.48⁰≈ 40⁰
3)
∠BAC = 76⁰
∠ACB = 40⁰
∠CBA = 180-(76+40) = 64⁰
Bearing C from B =360⁰- 64⁰-(180-68) = 184⁰
4)
Shortest distance from A to BC is height (h) from A to BC.
We know that area of the triangle
A= (1/2)|AB|*|AC|* sin(∠BAC) =(1/2)*370*510*sin(76⁰).
Also, area the same triangle
A= (1/2)|BC|*h = (1/2)*553*h.
So, we can write
(1/2)*370*510*sin(76⁰) =(1/2)*553*h
370*510*sin(76⁰) =553*h
h= 370*510*sin(76⁰) / 553= 331 m
h=331 m
Answer more questions on every topic you’ve been thought. Answer research questions and questions likely to come out in the exam. Dwell on what you are trying to know more that what you already know. A planner could help as well and the Good God would help you
BB BA BB BA
................
Answer:
gawin mo pag isipan mo wag puro brainly