<span>Part B
What are the values of the intial velocity vector components v0,x and v0,y (both in m/s) as well as the acceleration vector components a0,x and a0,y (both in m/s2)? Here the subscript 0 means "at time t0."
15.0, 26.0, 0, -9.80
</span><span>Part C
What are the values of the velocity vector components v1,x and v1,y (both in m/s) as well as the acceleration vector components a1,x and a1,y (both in m/s2)? Here the subscript 1 means that these are all at time t1.
15, 26, 0, -9.81</span><span>
</span>
Answer:
When the bag of apples are on the floor, the force of gravity is equal to the force applied in the upward direction.
But when the girl picks up the bag of apples, she applies a force on the bag of apples in the upward direction greater than that of the gravitational force.
Explanation:
Gravitational force for an object is always constant at a specific point. When an object is in the state of rest, there is an equal force opposite to the direction of Gravitational Force.
Now, to lift an object upwards, an external force must be applied that is greater than the force of gravitation.
So, when the girl picks up the bag of apples,
Gravitational Force < Force applied by the girl to lift the bag.
If the ice absorbed 350,000 joules in 5 minutes, then it absorbed energy
at the rate of
(350,000 joules) / (5 x 60 seconds) =<em> 1,166-2/3 watts</em> .
Surely the ice cube didn't absorb every joule delivered to the cooking chamber,
so the microwave oven's cooking power had to be significantly more than that.
Answer:

Explanation:
It is given that,
Speed of the projectile is 0.5 v. Let h is the height above the ground. Using the first equation of motion to find it.


Initial speed of the projectile is v and final speed is 0.5 v.


g is the acceleration due to gravity
Let h is the height above the ground. Using the second equation of motion as :



So, the height of the projectile above the ground is
. Hence, this is the required solution.