Answer:
31.2 m/s
Explanation:
= Frequency of approach = 480 Hz
= Frequency of going away = 400 Hz
= Speed of sound in air = 343 m/s
= Speed of truck
Frequency of approach is given as
eq-1
Frequency of moving awayy is given as
eq-2
Dividing eq-1 by eq-2


= 31.2 m/s
Answer:
The total momentum of the system before the collision is 0.0325 kg-m/s due east direction.
Explanation:
Given that,
Mass of the cart, m = 250 g = 0.25 kg
Initial velocity of the cart, u = 0.31 m/s (due right)
Mass of another cart, m' = 500 g = 0.5 kg
Initial velocity of the another cart u' = -0.22 m/s (due left)
Let p is the total momentum of the system before the collision. It is given by :

So, the total momentum of the system before the collision is 0.0325 kg-m/s due east direction.
The wavelength of the third line in the Lyman series, and identify the type of EM radiation
In this series, the spectral lines are obtained when an electron makes a transition from any high energy level (n=2,3,4,5... ). The wavelength of light emitted in this series lies in the ultraviolet region of the electromagnetic spectrum.
1 / lambda = R(h)* (
-
)
= 109678 (
-
)
= 109678 (8/9)
Lambda = 9 / (109678 * 8 )
= 102.6 *
m = 102.6 nm
To learn more about Lyman series here
brainly.com/question/5762197
#SPJ4
B) Weather changes day to day, while climate changes region to region.
Climate is the weather in a certain area. It's usually the average weather over a long period of time
Weather is in shorter terms then climate
Hope this helped!
~Just a girl in love with Shawn Mendes
Answer:
Explanation:
Based on the wave model of light, physicists predicted that increasing light amplitude would increase the kinetic energy of emitted photoelectrons, while increasing the frequency would increase measured current.
Contrary to the predictions, experiments showed that increasing the light frequency increased the kinetic energy of the photoelectrons, and increasing the light amplitude increased the current.
Based on these findings, Einstein proposed that light behaved like a stream of particles called photons with an energy of \text{E}=h\nuE=hνstart text, E, end text, equals, h, \nu.
The work function, \PhiΦ\Phi, is the minimum amount of energy required to induce photoemission of electrons from a metal surface, and the value of \PhiΦ\Phi depends on the metal.
The energy of the incident photon must be equal to the sum of the metal's work function and the photoelectron kinetic energy: