Using Pythagorean theorem.
16^2 + (RT)^2 = 20^2
256 + (RT)^2 = 400
(RT)^2 = 144
RT = 12
Using altitude theorem to find ST:
16/12= 12/ST
16ST = 144
ST = 9
Using Pythagorean theorem again:
12^2 + 9^2 = SR^2
144 + 81 = SR^2
225 = SR^2
SR= 15
Final answer: SR= 15
Hope this helps!
Answer:
The Smoothie Shack can make 10 Berry Blaster
Step-by-step explanation:
Hope this helps or right at least. :^
<u>1 = 62°</u> ( Vertically Opposite Angles )
<u>10 = 62°</u> ( Corresponding Angles )
<u>9 = 10 = 62°</u> ( Vertically Opposite Angles )
<u>6 = 95°</u> ( Vertically Opposite Angles )
<u>7 = 180° - 95° = 85°</u> ( Linear Pair )
<u>8 = 7 = 85°</u> ( Vertically Opposite Angles )
<u>5 = 8 = 85°</u> ( Corresponding Angles )
<u>3 = 5 = 85°</u> ( Vertically Opposite Angles )
4 = 180° - ( 9 + 7 )
4 = 180° - ( 62° + 85° )
4 = 180° - 147°
<u>4 = 33°</u> ( Angle Sum Property )
<u>2 = 4 = 33°</u> ( Vertically Opposite Angles )
Answer:
(-5, -8)
Step-by-step explanation:









Answer:
Courses
Search
Donate
Login
Sign up
Main content
Math Algebra 1 Absolute value & piecewise functions Graphs of absolute value functions
Shifting absolute value graphs
Practice: Shift absolute value graphs
Scaling & reflecting absolute value functions: equation
Scaling & reflecting absolute value functions: graph
Practice: Scale & reflect absolute value graphs
Graphing absolute value functions
Practice: Graph absolute value functions
Absolute value graphs review
This is the currently selected item.
Next lesson
Piecewise functions
Absolute value graphs review
CCSS.Math: HSF.IF.C.7, HSF.IF.C.7b
The general form of an absolute value function is f(x)=a|x-h|+k. From this form, we can draw graphs. This article reviews how to draw the graphs of absolute value functions.
Step-by-step explanation: