Using a table of values, the outputs of f(x) for whole numbers are 0, 1, 4, 9, 16, 25, 36, and so on. For the same input values, g(x) has outputs of 1, 2, 4, 8, 16, 32, and 64. Continuing to double the output each time results in larger outputs than those of f(x). The exponential function, g(x), has a constant multiplicative rate of change and will increase at a faster rate than the quadratic function.
(ed. just click all of them)
Answer:
The value of n is -6
Step-by-step explanation:
- If the function f(x) is translated k units up, then its image is g(x) = f(x) + k
- If the function f(x) is translated k units down, then its image is g(x) = f(x) - k
- The vertex form of the quadratic function is f(x) = a(x - h)² + k, where a is the coefficient of x² and (h, k) is the vertex
∵ k(x) = x²
→ Its graph is a parabola with vertex (0, 0)
∴ The vertex of the prabola which represents it is (0, 0)
∵ The given graph is the graph of p(x)
∵ Its vertex is (0, -6)
∴ h = 0 and k = -6
∵ a = 1
→ Substitute them in the form above
∴ p(x) = 1(x - 0)² + -6
∴ p(x) = x² - 6
→ Substitute x² by k(x)
∴ p(x) = k(x) - 6
∵ p(x) = k(x) + n
→ By comparing the two right sides
∴ n = -6
∴ The value of n is -6
Look at the attached figure for more understanding
The red parabola represents k(x)
The blue parabola represents p(x)
So Roger flight left at exactly 9.27:am and it will land at 1:05pm
So count on to 12:27 will be 3 hours and subtract from 5 because 65 is 05 3hours and 38mins
Answer:
The answer is B (9)
Step-by-step explanation:
Count the distance.