
From a point Q, the length of the tangent to a circle is 24 cm and the distance of Q from the centre is 25 cm find the radius of the circle.

Here, O is the center of the circle.
<u>⟼</u><u> </u><u>Given</u><u> </u><u>:</u>
<u>⟼</u><u> </u><u>To</u><u> </u><u>Find</u><u> </u><u>:</u><u> </u> We have to find the radius OP.
Since QP is tangent, OP perpendicular to QP.
(Since, Tangent is Perpendicular to Radius ⠀⠀⠀⠀⠀⠀⠀at the point of contact)
So, ∠OPQ=90°
<u>⟼</u><u> </u><u>By</u><u> </u><u>Applying</u><u> </u><u>Pythagoras</u><u> </u><u>Theorem</u><u> </u><u>:</u>
OP² + RQ² = OQ²
OP² + (24)² = (25)²
OP² = 625 - 576
OP² = 49
OP = √49
<u>OP</u><u> </u><u>=</u><u> </u><u>7</u><u> </u><u>cm</u>
<u>Hence</u><u>,</u><u> </u><u>The</u><u> </u><u>Radius</u><u> </u><u>is</u><u> </u><u>7</u><u> </u><u>cm</u>
⠀⠀
⠀
<h3>-MissAbhi</h3>
Answer:
8
Step-by-step explanation:
8 /2
4/2
2/2
1
8 = 2³
24/2
12/2
6/2
3/3
1
24 = 2³ x 3
GCF = 2³ = 8
7.Answer:A Work:cause u subtract 3.9- 2.4 and then multiply 1.5(6) and get 9
Step-by-step explanation:
We have,
If a quadratic equation with real coefficients has a discriminant of -36.
The general form of quadratic equation is :

The discriminant of this equation is : 
If D=0, it will have 1 real roots
If D>0, it will have 2 real roots
If D<0, it will have no real roots
We have,
D = -36 < 0, so, the quadratic equation will have no real roots.