Answer:
Explanation:
Dear Student, this question is incomplete, and to attempt this question, we have attached the complete copy of the question in the image below. Please, Kindly refer to it when going through the solution to the question.
To objective is to find the:
(i) required heat exchanger area.
(ii) flow rate to be maintained in the evaporator.
Given that:
water temperature = 300 K
At a reasonable depth, the water is cold and its temperature = 280 K
The power output W = 2 MW
Efficiency
= 3%
where;



However, from the evaporator, the heat transfer Q can be determined by using the formula:
Q = UA(L MTD)
where;

Also;




LMTD = 4.97
Thus, the required heat exchanger area A is calculated by using the formula:

where;
U = overall heat coefficient given as 1200 W/m².K

The mass flow rate:

Answer:
<em>Gravity</em><em>.</em><em> </em><em>The</em><em> </em><em>weight-force</em><em> </em><em>or</em><em> </em><em>weight</em><em> </em><em>of</em><em> </em><em>an</em><em> </em><em>object</em><em> </em><em>is</em><em> </em><em>the</em><em> </em><em>force</em><em> </em><em>because</em><em> </em><em>of</em><em> </em><em>Gravity</em><em>,</em><em> </em><em>which</em><em> </em><em>acts</em><em> </em><em>on</em><em> </em><em>the</em><em> </em><em>object</em><em> </em><em>attracting</em><em> </em><em>it</em><em> </em><em>towards</em><em> </em><em>the</em><em> </em><em>centre</em><em> </em><em>of</em><em> </em><em>the</em><em> </em><em>earth</em><em>.</em>
<em>Hope</em><em> </em><em>this</em><em> </em><em>helps</em><em>,</em><em> </em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>x</em>
Answer:
The final velocity of the runner at the end of the given time is 2.7 m/s.
Explanation:
Given;
initial velocity of the runner, u = 1.1 m/s
constant acceleration, a = 0.8 m/s²
time of motion, t = 2.0 s
The velocity of the runner at the end of the given time is calculate as;

where;
v is the final velocity of the runner at the end of the given time;
v = 1.1 + (0.8)(2)
v = 2.7 m/s
Therefore, the final velocity of the runner at the end of the given time is 2.7 m/s.