1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
SpyIntel [72]
3 years ago
14

Every Saturday, Heather goes mountain biking. It takes Heather 32 minutes to bike 6 miles. The distance is a function of the tim

e. Which is a reasonable range in the context of the problem?
1. 0 ≤ f(t) ≤ 6
2. 0 ≤ f(t) ≤ 32
3. 6 ≤ f(t) ≤ 32
4. 12 ≤ f(t) ≤ 24
Mathematics
2 answers:
AVprozaik [17]3 years ago
7 0
Since distance is a function of time, then the range must be the possible time that Heather could spend with her mountain bike.

Given that she can travel for period 32 minutes and that there can be no negative time. The answer is:
2. 0 ≤ f(t) ≤ 32

nydimaria [60]3 years ago
3 0
To answer the problem above, we must interpret each given ranges in words.
1. If the time is greater than or equal to zero, the distance would be less than or equal to 6 miles.
2. If the time is less than or equal to 32 minutes, the distance would be greater than or equal to 0 miles
3. If the time is less than or equal to 32 minutes, the distance would be greater or equal to 6 miles
4. If the time is less than or equal to 24 minutes, the distance would be greater or equal to 12 miles.

The reasonable range is No. 2 .
You might be interested in
2 × (5 + 5)<br><br> Which of the following describes (5 + 5) in the expression above?
Basile [38]

Answer:

20

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
Factor by Grouping 8x+8y+rx+ry<br> I do not understand this.
nadezda [96]
FACTORISATION IS BASICALLY FINDING LIKE-TERMS.
1. FIND THE HCF OF 8. HERE, THE HCF IS 8. ALSO, CHECK ALL THE LIKE-TERMS. LIKE-TERMS ARE OUTSIDE THE BRACKET AND UNLIKE TERMS ARE INSIDE.
2. ADD THE TERMS IN THE BRACKET AND THE TERMS OUTSIDE THE BRACKET FROM STEP 1.

8x + 8y + rx + ry
1. 8 (x + y) + r (x + y)
2. (x +y) (8+r)
8 0
3 years ago
Read 2 more answers
Please help me please please please
algol13

Answer:

20

Step-by-step explanation:

The lower quartile Q₁ is the value at the left side of the box, that is

Q₁ = 20

5 0
3 years ago
Read 2 more answers
Find the value of given expression<br><br><img src="https://tex.z-dn.net/?f=%20%5Csqrt%7B29%20-%204%7D%20" id="TexFormula1" titl
Dafna11 [192]
So 29-4 =25... which is a perfect square

Answer= +/- 5
3 0
3 years ago
Read 2 more answers
The curve
kherson [118]

Answer:

Point N(4, 1)

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right  

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality<u> </u>

<u>Algebra I</u>

  • Coordinates (x, y)
  • Functions
  • Function Notation
  • Terms/Coefficients
  • Anything to the 0th power is 1
  • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Rule [Root Rewrite]:                                                                     \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<u />\displaystyle y = \sqrt{x - 3}<u />

<u />\displaystyle y' = \frac{1}{2}<u />

<u />

<u>Step 2: Differentiate</u>

  1. [Function] Rewrite [Exponential Rule - Root Rewrite]:                                   \displaystyle y = (x - 3)^{\frac{1}{2}}
  2. Chain Rule:                                                                                                        \displaystyle y' = \frac{d}{dx}[(x - 3)^{\frac{1}{2}}] \cdot \frac{d}{dx}[x - 3]
  3. Basic Power Rule:                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{\frac{1}{2} - 1} \cdot (1 \cdot x^{1 - 1} - 0)
  4. Simplify:                                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{-\frac{1}{2}} \cdot 1
  5. Multiply:                                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{-\frac{1}{2}}
  6. [Derivative] Rewrite [Exponential Rule - Rewrite]:                                          \displaystyle y' = \frac{1}{2(x - 3)^{\frac{1}{2}}}
  7. [Derivative] Rewrite [Exponential Rule - Root Rewrite]:                                 \displaystyle y' = \frac{1}{2\sqrt{x - 3}}

<u>Step 3: Solve</u>

<em>Find coordinates</em>

<em />

<em>x-coordinate</em>

  1. Substitute in <em>y'</em> [Derivative]:                                                                             \displaystyle \frac{1}{2} = \frac{1}{2\sqrt{x - 3}}
  2. [Multiplication Property of Equality] Multiply 2 on both sides:                      \displaystyle 1 = \frac{1}{\sqrt{x - 3}}
  3. [Multiplication Property of Equality] Multiply √(x - 3) on both sides:            \displaystyle \sqrt{x - 3} = 1
  4. [Equality Property] Square both sides:                                                           \displaystyle x - 3 = 1
  5. [Addition Property of Equality] Add 3 on both sides:                                    \displaystyle x = 4

<em>y-coordinate</em>

  1. Substitute in <em>x</em> [Function]:                                                                                \displaystyle y = \sqrt{4 - 3}
  2. [√Radical] Subtract:                                                                                          \displaystyle y = \sqrt{1}
  3. [√Radical] Evaluate:                                                                                         \displaystyle y = 1

∴ Coordinates of Point N is (4, 1).

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Derivatives

Book: College Calculus 10e

4 0
3 years ago
Other questions:
  • Zoom in more, but can someone please help me with this?
    7·1 answer
  • The speed limit on a highway is 60 miles per hour. A vehicle travels for 2.2 hours on the highway and covers 165 miles. By how m
    12·1 answer
  • James bought $175 in accessories for his video game console. He spent $15 on a new power cord and the rest of his money on 5 new
    9·2 answers
  • the two fastest times in the past 20 years for the girls 200 meter run at clarksville elementary school are 27.97 sec and 27.93
    12·2 answers
  • How do you know a number is divisible by 6?
    9·2 answers
  • Robert is lying on the ground, looking at the top of a flagpole. The angle of elevation to the top of the flagpole is 25°. What
    13·1 answer
  • 13. Give an example of a linear equation that is<br> parallel to the y-axis.
    9·1 answer
  • (44/5 ÷ 3 5/7) – (11/3)2
    7·2 answers
  • Please I need help <br><br>9x + 14 ≤ 95​
    5·2 answers
  • What is the radius of a circle that has a circumference of 1
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!