3 cm on the map represents 31.5 km in reality.
3cm : 31.5 km
1cm : 31.5/3 km
1cm : 10.5km
So the scale on the map is 1cm represents 10.5 km.
Oh Foxy, Foxy, how totally debilitated you must be ! Try to relax. Nobody
enjoys a painful brain, and believe me, this problem is not worth it.
Let me put it to you this way: What if the problem said . . .
-- Demarcus has $8 more than his sister.
-- His sister has $4.
-- How much money ' M ' does Demarcus have ?
If your brain didn't hurt, you could quickly solve this right in there.
You would know that Demarcus' money ' M ' = 8 + 4 .
That's <em>almost </em>exactly what the problem <em>does</em> say.
Except it doesn't say he has "$8 more than his sister",
it says he has "at least" that much.
So you know that ' M ' is not exactly = 8 + 4, but that's the <u>least</u> it could be.
The actual amount of ' M ' is <u>more</u> than that.
Surely you can handle it from here, even with half of your brain
tied behind your back.
Take a good hard look at ' A ', and then go lie down.
Answer:
(2.25 , 0.75)
Step-by-step explanation:
solution is where the graphs intersect each other
3/4 = - x + 3
-x = 3/4 -3 = -2 1/4
x =2 1/4
Answer:
a = 1565217.39 ft / s ^ 2
t = 0.001725 seconds
Step-by-step explanation:
The first thing is to use the same system of units therefore we will pass the 28 inches to feet, like this:
28 in * (1 ft / 12 in) = 2.33 ft
Now yes, we can continue, we have the following data:
vi = 0
vf = 2700 ft / s
the equations in this case are as follows:
vf = vi + a * t
vf = a * t
rearranging for a
a = vf / t (1)
now with the position equation we know that:
x = vi * t + (a * t ^ 2) / 2
x = (a * t ^ 2) / 2 (2)
now replacing (1) in (2), we are left with:
x = (vf / t) * (t ^ 2) / 2
knowing that x would be 2.33 ft, which is when the cannonball exits the cannon.
2.33 = 2700 * t / 2
t = 2.33 * 2/2700 = 0.001725 seconds.
and now replace in (1)
a = vf / t = 2700 / 0.001725 = 1565217.39 ft / s ^ 2
The answer is 30 I’m sure of it