The <em><u>correct answer</u></em> is:

Explanation:
To write a composite function, we apply one function to another given function. In this case, we want to find area in terms of time; this means that the function A(r) gets applied to the function r(t).
In order to do this, we replace r with r(t). We already know that r(t)=0.5+2t; this means we replace r with 0.5+2t:
A(r(t))=π(0.5+2t)²
To simplify this, we simplify the squared term:
A(r(t)) = π(0.5+2t)(0.5+2t)
A(r(t)) = π(0.5*0.5+0.5*2t+2t*0.5+2t*2t)
A(r(t)) = π(0.25+t+t+4t²)
A(r(t)) = π(0.25+2t+4t²)
Let
X-----------------> number of pansies
y-----------------> number of trees
we know that
x=15*8----------> x=120 pansies
y=8 trees
cost of each trees is----------> $<span>20.75
</span>cost of each pansies is------> $2.50/6------> $5/12
[<span>expression to find Katherine’s final cost]=[cost trees]+[cost pansies]
</span>[cost trees]=y*$20.75
[cost pansies]=x*($5/12)
[expression to find Katherine’s final cost]=y*($20.75)+x*($5/12)
[expression to find Katherine’s final cost]=8*($20.75)+120*($5/12)
[expression to find Katherine’s final cost]=$166+$50
[expression to find Katherine’s final cost]=$216
the answer is
[expression to find Katherine’s final cost]=y*($20.75)+x*($5/12)
[expression to find Katherine’s final cost]=8*($20.75)+120*($5/12)
Katherine’s final cost is $216
Answer:
whats the question? its a little blurry and hard to see
Step-by-step explanation:
Answer:
(1) 56 miles/hour
Step-by-step explanation:
We need to find the average rate of change from t = 2 to t = 9.
At t = 2 hours, d = 106 miles.
At t = 9 hours, d = 498 miles.
The average rate of change in function f(x) from x = a to x = b is
[f(b) - f(a)]/(b - a)
average rate of change from t = 2 to t = 9 =
(498 - 106)/(9 - 2) = 392/7 = 56
Answer: (1) 56 miles/hour