Ok so we'll go ahead and solve for y first - we just need to get it alone on one side of the equal sign
Step 1: subtract 2x from each side
2x - 7y - 2x = 19 - 2x
This cancels out the 2x on the left, giving us
-7y = 19 - 2x
Step 2: divide both sides by -7
=
+ 
This gives us
y = -19/7 + 2x/7
That should be your answer for the first question. Now solving the next parts are easy. All you need to do is plug in x.
When x = -3
y = -19/7 + 2x/7
y = -19/7 + 2(-3)/7
y = -19/7 - 6/7
y = -25/7
When x = 0
y = -19/7 + 2x/7
y = -19/7 + 2(0)/7
y = -19/7
When x = 3
y = -19/7 + 2x/7
y = -19/7 + 2(3)/7
y = -19/7 + 6/7
y = -13/7
Hope that helps! Feel free to ask if I can help with anything else :)
Split up the interval [0, 2] into <em>n</em> equally spaced subintervals:
![\left[0,\dfrac2n\right],\left[\dfrac2n,\dfrac4n\right],\left[\dfrac4n,\dfrac6n\right],\ldots,\left[\dfrac{2(n-1)}n,2\right]](https://tex.z-dn.net/?f=%5Cleft%5B0%2C%5Cdfrac2n%5Cright%5D%2C%5Cleft%5B%5Cdfrac2n%2C%5Cdfrac4n%5Cright%5D%2C%5Cleft%5B%5Cdfrac4n%2C%5Cdfrac6n%5Cright%5D%2C%5Cldots%2C%5Cleft%5B%5Cdfrac%7B2%28n-1%29%7Dn%2C2%5Cright%5D)
Let's use the right endpoints as our sampling points; they are given by the arithmetic sequence,

where
. Each interval has length
.
At these sampling points, the function takes on values of

We approximate the integral with the Riemann sum:

Recall that

so that the sum reduces to

Take the limit as <em>n</em> approaches infinity, and the Riemann sum converges to the value of the integral:

Just to check:

Answer:
where's the worksheet
Step-by-step explanation: