Answer:
26042.
Step-by-step explanation:
What's the first term of this geometric series?
2.
What's the common ratio of this geometric series?
Divide one of the terms with the previous term. For example, divide the second term -10 with the first term 2.
.
What's the sum of this series to the seventh term?
The sum of the first n terms of a geometric series is:
,
where
is the first term of the series,
is the common ratio of the series, and
is the number of terms in this series.
.
Answer: 9
Step-by-step explanation: just devide then times
Answer : 96
x – y = 16 --------> equation 1
1/8 x + 1/2 y = 52
x is the higher grade and y is the lower grade
We solve the first equation for y
x - y = 16
-y = 16 -x ( divide each term by -1)
y = -16 + x
Now substitute y in second equation
1/8 x + 1/2 ( -16 + x ) = 52
1/8x - 8 + 1/2 x = 52
1/8x + 1/2x - 8 = 52
Take common denominator to combine fractions
1/8x + 4/8x -8 = 52
5/8x - 8 = 52
Add 8 on both sides
5/8x = 60
Multiply both sides by 8/5
x = 96
We know x is the higher grade
96 is the higher grade of Jose’s two tests.
Answer;
The relevant probability is 0.136 so the value of 56 girls in 100 births is not a significantly high number of girls because the relevant probability is greater than 0.05
Step-by-step explanation:
The complete question is as follows;
For 100 births, P(exactly 56 girls = 0.0390 and P 56 or more girls = 0.136. Is 56 girls in 100 births a significantly high number of girls? Which probability is relevant to answering that question? Consider a number of girls to be significantly high if the appropriate probability is 0.05 or less V so 56 girls in 100 birthsa significantly high number of girls because the relevant probability is The relevant probability is 0.05
Solution is as follows;
Here. we want to know which of the probabilities is relevant to answering the question and also if 56 out of a total of 100 is sufficient enough to provide answer to the question.
Now, to answer this question, it would be best to reach a conclusion or let’s say draw a conclusion from the given information.
The relevant probability is 0.136 so the value of 56 girls in 100 births is not a significantly high number of girls because the relevant probability is greater than 0.05