
Here, we want to find the diagonal of the given solid
To do this, we need the appropriate triangle
Firstly, we need the diagonal of the base
To get this, we use Pythagoras' theorem for the base
The other measures are 6 mm and 8 mm
According ro Pythagoras' ; the square of the hypotenuse equals the sum of the squares of the two other sides
Let us have the diagonal as l
Mathematically;
![\begin{gathered} l^2=6^2+8^2 \\ l^2\text{ = 36 + 64} \\ l^2\text{ =100} \\ l\text{ = }\sqrt[]{100} \\ l\text{ = 10 mm} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20l%5E2%3D6%5E2%2B8%5E2%20%5C%5C%20l%5E2%5Ctext%7B%20%3D%2036%20%2B%2064%7D%20%5C%5C%20l%5E2%5Ctext%7B%20%3D100%7D%20%5C%5C%20l%5Ctext%7B%20%3D%20%7D%5Csqrt%5B%5D%7B100%7D%20%5C%5C%20l%5Ctext%7B%20%3D%2010%20mm%7D%20%5Cend%7Bgathered%7D)
Now, to get the diagonal, we use the triangle with height 5 mm and the base being the hypotenuse we calculated above
Thus, we calculate this using the Pytthagoras' theorem as follows;
Answer:
The computer can perform 1051050 calculations in 10 seconds.
Step-by-step explanation:
1. Put the quantity of calculations the computer can perform in 1 second:

2. Multiply the quantity of calculations by 10 seconds:

Note that the units of seconds are cancelled as they appear on the numerator and the denominator, and the final response unit is given in calculations number.
The computer can perform 1051050 calculations in 10 seconds.
Step-by-step explanation:
We have our question.
f + 2.5= 3f + 7.24
<em>T</em><em>h</em><em>e</em><em>n</em><em> </em><em>y</em><em>o</em><em>u</em><em> </em><em>c</em><em>o</em><em>m</em><em>b</em><em>i</em><em>n</em><em>e</em><em> </em><em>l</em><em>i</em><em>k</em><em>e</em><em> </em><em>t</em><em>e</em><em>r</em><em>m</em><em>s</em><em> </em><em>t</em><em>h</em><em>a</em><em>t</em><em> </em><em>t</em><em>a</em><em>k</em><em>i</em><em>n</em><em>g</em><em> </em><em>t</em><em>h</em><em>e</em><em> </em><em>co</em><em>e</em><em>f</em><em>f</em><em>i</em><em>c</em><em>i</em><em>e</em><em>n</em><em>t</em><em>s</em><em> </em><em>a</em><em>p</em><em>a</em><em>r</em><em>t</em><em>.</em>
<em>T</em><em>h</em><em>a</em><em>t</em><em> </em><em>i</em><em>s</em><em>,</em>
<em>N</em><em>O</em><em>T</em><em>E</em><em>:</em><em> </em><em>W</em><em>H</em><em>E</em><em>N</em><em> </em><em>T</em><em>A</em><em>K</em><em>I</em><em>N</em><em>G</em><em> </em><em>A</em><em> </em><em>N</em><em>U</em><em>M</em><em>B</em><em>E</em><em>R</em><em> </em><em>A</em><em>C</em><em>R</em><em>O</em><em>S</em><em>S</em><em> </em><em>A</em><em>N</em><em>D</em><em> </em><em>E</em><em>Q</em><em>U</em><em>A</em><em>L</em><em> </em><em>S</em><em>I</em><em>G</em><em>N</em><em> </em><em>T</em><em>H</em><em>E</em><em> </em><em>S</em><em>I</em><em>G</em><em>N</em><em> </em><em>C</em><em>H</em><em>A</em><em>N</em><em>G</em><em>E</em><em>S</em><em>,</em><em> </em><em>E</em><em>.</em><em>G</em><em> </em><em>-</em><em> </em><em>T</em><em>O</em><em> </em><em>+</em><em> </em><em>.</em>
<em>f</em><em> </em><em>-</em><em> </em><em>3</em><em>f</em><em> </em><em>=</em><em> </em><em>7</em><em>.</em><em>2</em><em>4</em><em> </em><em>-</em><em> </em><em>2</em><em>.</em><em>5</em>
<em>-</em><em>2</em><em>f</em><em> </em><em>=</em><em> </em><em>4</em><em>.</em><em>7</em><em>4</em>
<em>D</em><em>i</em><em>v</em><em>i</em><em>d</em><em>e</em><em> </em><em>b</em><em>o</em><em>t</em><em>h</em><em> </em><em>s</em><em>i</em><em>d</em><em>e</em><em>s</em><em> </em><em>b</em><em>y</em><em> </em><em>c</em><em>o</em><em>e</em><em>f</em><em>f</em><em>i</em><em>c</em><em>i</em><em>e</em><em>n</em><em>t</em><em> </em><em>o</em><em>f</em><em> </em><em>f</em><em> </em><em>w</em><em>h</em><em>i</em><em>c</em><em>h</em><em> </em><em>i</em><em>s</em><em> </em><em>-</em><em>2</em>
<em><u>-</u></em><em><u>2</u></em><em><u>f</u></em><em> </em><em>=</em><em> </em><em><u>4</u></em><em><u>.</u></em><em><u>7</u></em><em><u>4</u></em>
<em>-</em><em>2</em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>-</em><em>2</em>
<em>f</em><em> </em><em>=</em><em> </em><em>8</em><em>.</em><em>4</em><em>9</em>
First of all, let’s find CB.
sin(45°) = CB : 6sqrt(2)
CB = 6
Now we can find CD
cos(60°) = x : 6
x = 3
Answer:
y = 5
Step-by-step explanation:
cross-multiply:
6y = 30
y = 5