two hundred ninety-six ten thousandths
Answer:
<u><em></em></u>
- <u><em>Yes, it is reasonable to expect that more than one subject will experience headaches</em></u>
Explanation:
Notice that where it says "assume that 55 subjects are randomly selected ..." there is a typo. The correct statement is "assume that 5 subjects are randomly selected ..."
You are given the table with the probability distribution, assuming, correctly, the binomial distribution with n = 5 and p = 0.732.
- p = 0.732 is the probability of success (an individual experiences headaches).
- n = 5 is the number of trials (number of subjects in the sample).
The meaning of the table of the distribution probability is:
The probability that 0 subjects experience headaches is 0.0014; the probability that 1 subject experience headaches is 0.0189, and so on.
To answer whether it <em>is reasonable to expect that more than one subject will experience headaches</em>, you must find the probability that:
- X = 2 or X = 3 or X = 4 or X = 5
That is:
- P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5).
That is also the complement of P(X = 0) or P(X = 1)
From the table:
- P(X = 0) = 0.0014
- P(X = 1) = 0.0189
Hence:
- 1 - P(X = 0) - P(X = 1) = 1 - 0.0014 - 0.0189 = 0.9797
That is very close to 1; thus, it is highly likely that more than 1 subject will experience headaches.
In conclusion, <em>yes, it is reasonable to expect that more than one subject will experience headaches</em>
3.15. Just find the unit rate which is 1.5 and multiply that by 3
She saves 4.8$ and she spends 7.20$ each week
Step-by-step explanation:
HERE,
redius of a circle (r)=14 meters.
we know that,
<u>According</u><u> </u><u>to</u><u> </u><u>the question</u><u>, </u>
circle circumference=
so, the circumference of that circle is <em><u>8</u></em><em><u>8</u></em><em><u> </u></em><em><u>meters</u></em><em><u>.</u></em>