1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
timama [110]
3 years ago
12

357 Miles in 5 hours ____miles per hour Find until rate

Mathematics
1 answer:
Mandarinka [93]3 years ago
8 0
71.4 and to check just multiply 71.4 times 5 and it'll get 357
You might be interested in
I have to use trigonometric identities to solve. But I’m having trouble finding the values of cos A and sin B. Can anyone help m
katrin [286]

let's notice something, angles α and β are both in the I Quadrant, and on the first quadrant the x-coordinate/cosine and y-coordinate/sine are both positive.

\bf \textit{Sum and Difference Identities} \\\\ cos(\alpha - \beta)= cos(\alpha)cos(\beta) + sin(\alpha)sin(\beta) \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ sin(\alpha)=\cfrac{\stackrel{opposite}{15}}{\stackrel{hypotenuse}{17}}\impliedby \textit{let's find the \underline{adjacent side}} \\\\\\ \textit{using the pythagorean theorem} \\\\ c^2=a^2+b^2\implies \pm\sqrt{c^2-b^2}=a \qquad \begin{cases} c=hypotenuse\\ a=adjacent\\ b=opposite\\ \end{cases}

\bf \pm\sqrt{17^2-15^2}=a\implies \pm\sqrt{64}=a\implies \pm 8 = a\implies \stackrel{I~Quadrant}{\boxed{+8=a}} \\\\[-0.35em] ~\dotfill\\\\ cos(\beta)=\cfrac{\stackrel{adjacent}{3}}{\stackrel{hypotenuse}{5}}\impliedby \textit{let's find the \underline{opposite side}} \\\\\\ \textit{using the pythagorean theorem} \\\\ c^2=a^2+b^2\implies \pm\sqrt{c^2-a^2}=b \qquad \begin{cases} c=hypotenuse\\ a=adjacent\\ b=opposite\\ \end{cases}

\bf \pm\sqrt{5^2-3^2}=b\implies \pm\sqrt{16}=b\implies \pm 4=b\implies \stackrel{\textit{I~Quadrant}}{\boxed{+4=b}} \\\\[-0.35em] ~\dotfill

\bf cos(\alpha - \beta)=\stackrel{cos(\alpha)}{\left( \cfrac{8}{17} \right)}\stackrel{cos(\beta)}{\left( \cfrac{3}{5} \right)}+\stackrel{sin(\alpha)}{\left( \cfrac{15}{17} \right)}\stackrel{sin(\beta)}{\left( \cfrac{4}{5} \right)}\implies cos(\alpha - \beta)=\cfrac{24}{85}+\cfrac{60}{85} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ ~\hfill cos(\alpha - \beta)=\cfrac{84}{85}~\hfill

5 0
3 years ago
642 ÷ 5 standard algorithm
damaskus [11]

642/5= 128.4


i hope this helps

7 0
3 years ago
Read 2 more answers
What do i do ???????
slamgirl [31]

Answer:

move each point of the triangle 5 units to the right and one unit up.

G is at -3,-1

-3+5 = 2

-1+1 = 0

2,0 is the coordinates of G' or the new G

T is at -1,-1

-1+5 = 4

-1+1 = 0

4,0 is the coordinates of T' or the new T

Last of all, B is at -3,-5

-3+5 = 2

-5+1 = -4

2,-4 is the coordinates of the B' or the new B.

Step-by-step explanation:

6 0
3 years ago
A diameter of a circle has endpoints P(-10,-2) and Q(4,6).
kompoz [17]

Answer:

a. (-3, 2).

b.  √65

c.  (x + 3)^2 + (y - 2)^2 = 65

Step-by-step explanation:

a.  The center is the midpoint  of the diameter PQ.

= (-10+4)/2, (-2+6)/2

= (-3, 2).

b. The radius is the distance from the center to a point on the circle.

Take the point (4, 6):

The radius = √((-3-4)^2 + (2-6)^2)

= √65.

c.  The equation of the circle is:

Using the standard form

(x - h)^2 + (y - k)^2 = r^2  where  (h, k) is the center and r = the radius:

it is (x - (-3)^2 + (y - 2) = 65

= (x + 3)^2 + (y - 2)^2 = 65.

4 0
3 years ago
Read 2 more answers
Is this correct?Check image
Zinaida [17]
Yes it is correct!:)
3 0
3 years ago
Read 2 more answers
Other questions:
  • Atticus wants to buy of a square yard of wrapping paper. The paper costs $2.40 per square yard. How much will Atticus spend on t
    10·1 answer
  • Fred the clown can create 20 animal balloons every 15 minutes. how much can h make in 6 minutes
    8·1 answer
  • Priya has a recipe for banana bread. She uses 17 1/2 cups of flower to make 5 loaves of bread Andre will follow the same recipe.
    13·1 answer
  • Which ordered pair makes the equation true? 2x – 8y = –4
    13·1 answer
  • How do you right four and forty thousandths in a fraction
    8·1 answer
  • All the answers for 1 and 2
    6·1 answer
  • Please help me answer the 3 questions ^^
    8·2 answers
  • Smaller circle C is inside larger circle C. The smaller circle is labeled the garden. The radius of the smaller circle is 8 feet
    12·2 answers
  • There were 11 students running in a race how many different arrangements of first second and third place are possible
    14·1 answer
  • What is true about the sum of the two polynomials?
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!