Significant figures tells us that about how may digits we can count on to be precise given the uncertainty in our calculations or data measurements.
Since, one inch = 2.54 cm.
This is equivalent as saying that 1.0000000.. inch = 2.540000... cm.
Since the inch to cm conversion doesn't add any uncertainty, so we are free to keep any and all the significant figures.
Since, being an exact number, it has an unlimited number of significant figures and thus when we convert inch to cm we multiply two exact quantities together. Therefore, it will have infinite number of significant figures.
Step-by-step explanation:
there are 7 decimal places from between 2 and 3 to the very end. so the answer is 7
<span>280
I'm assuming that this question is badly formatted and that the actual number of appetizers is 7, the number of entres is 10, and that there's 4 choices of desserts. So let's take each course by itself.
You can choose 1 of 7 appetizers. So we have
n = 7
After that, you chose an entre, so the number of possible meals to this point is
n = 7 * 10 = 70
Finally, you finish off with a dessert, so the number of meals is:
n = 70 * 4 = 280
Therefore the number of possible meals you can have is 280.
Note: If the values of 77, 1010 and 44 aren't errors, but are actually correct, then the number of meals is
n = 77 * 1010 * 44 = 3421880
But I believe that it's highly unlikely that the numbers in this problem are correct. Just imagine the amount of time it would take for someone to read a menu with over a thousand entres in it. And working in that kitchen would be an absolute nightmare.</span>
Take the square root of 10,000, which is 100.