Replace <span><span>f<span>(x)</span></span><span>f<span>(x)</span></span></span> with <span>yy</span>.<span><span>y=<span>x2</span>−1</span><span>y=<span>x2</span>-1
</span></span>Interchange the variables.<span><span>x=<span>y2</span>−1</span><span>x=<span>y2</span>-1
</span></span>Solve for <span>yy</span>.
<span><span>y=<span>√<span>1+x</span></span>,−<span>√<span>1+x</span></span></span><span>y=<span>1+x</span>,-<span>1+x
</span></span></span>Solve for <span>yy</span> and replace with <span><span><span>f<span>−1</span></span><span>(x)</span></span><span><span>f<span>-1</span></span><span>(x)</span></span></span>.
<span><span><span>This is your answer=f<span>−1</span></span><span>(x)</span>=<span>√<span>1+x</span></span>,−<span>√<span>1+x</span></span></span><span><span>f<span>-1</span></span><span>(x)</span>=<span>1+x</span>,-<span>1+x
Hope you have a wonderful day! hope this helps!
</span></span></span>
Answer:
a) CI = ( 5,1 ; 5,7 )
b) SE = 0,1
Step-by-step explanation:
a) Sample random n = 100
Mean = μ = 5,4
Standard deviation s = 1,3
CI = 99 % α = 1 % α = 0,01 α/2 = 0,005
z(c) for 0,005 is from z-table z(c) = 2,575
z(c) = ( X - μ ) /s/√n CI = μ ± z(c) * s/√n
CI = 5,4 ± 2,575* 1,3/10
CI = 5,4 ± 0,334
CI = ( 5,1 ; 5,7 )
b) SE = Standard deviation / √n
SE = 1,3 /10 SE = 0,1
We can support that with 99 % of probability our random variable will be in the CI.
Its a common technique for remembering the order of operations. The abbreviation pemdas is turned into the phrase "Please excuse my Dear Aunt Sally". It stands for "Parentheses, Exponents, Multiplication and Division, and Addition and Subtraction.
Answer:
38
Step-by-step explanation:
APEX