It would be 2 by 2 in inches as the frame can only fit that much , which the area framed would be 4 inches as you multiply 2×2=4
Answer:
Graph of the inequality 3y-2x>-18 is given below.
Step-by-step explanation:
We are given the inequality, 3y-2x>-18
Now, using the 'Zero Test', which states that,
After substituting the point (0,0) in the inequality, if the result is true, then the solution region is towards the origin. If the result is false, then the solution region is away from the origin'.
So, after substituting (0,0) in 3y-2x>-18, we get,
3\times 0-2\times 0>-18
i.e. 0 > -18, which is true.
Thus, the solution region is towards the origin.
Hence, the graph of the inequality 3y-2x>-18 is given below.
Marcy bought a total of 22.8 potatoes. 10.32+12.48=22.8
Answer:
![\large\boxed{1.\ f^{-1}(x)=4\log(x\sqrt[4]2)}\\\\\boxed{2.\ f^{-1}(x)=\log(x^5+5)}\\\\\boxed{3.\ f^{-1}(x)=\sqrt{4^{x-1}}}](https://tex.z-dn.net/?f=%5Clarge%5Cboxed%7B1.%5C%20f%5E%7B-1%7D%28x%29%3D4%5Clog%28x%5Csqrt%5B4%5D2%29%7D%5C%5C%5C%5C%5Cboxed%7B2.%5C%20f%5E%7B-1%7D%28x%29%3D%5Clog%28x%5E5%2B5%29%7D%5C%5C%5C%5C%5Cboxed%7B3.%5C%20f%5E%7B-1%7D%28x%29%3D%5Csqrt%7B4%5E%7Bx-1%7D%7D%7D)
Step-by-step explanation:


![\log_55^{\frac{1}{4}y}=\log_5\left(2^\frac{1}{4}x\right)\qquad\text{use}\ a^\frac{1}{n}=\sqrt[n]{a}\\\\\dfrac{1}{4}y=\log(x\sqrt[4]2)\qquad\text{multiply both sides by 4}\\\\y=4\log(x\sqrt[4]2)](https://tex.z-dn.net/?f=%5Clog_55%5E%7B%5Cfrac%7B1%7D%7B4%7Dy%7D%3D%5Clog_5%5Cleft%282%5E%5Cfrac%7B1%7D%7B4%7Dx%5Cright%29%5Cqquad%5Ctext%7Buse%7D%5C%20a%5E%5Cfrac%7B1%7D%7Bn%7D%3D%5Csqrt%5Bn%5D%7Ba%7D%5C%5C%5C%5C%5Cdfrac%7B1%7D%7B4%7Dy%3D%5Clog%28x%5Csqrt%5B4%5D2%29%5Cqquad%5Ctext%7Bmultiply%20both%20sides%20by%204%7D%5C%5C%5C%5Cy%3D4%5Clog%28x%5Csqrt%5B4%5D2%29)
![--------------------------\\2.\\y=(10^x-5)^\frac{1}{5}\\\\\text{Exchange x and y. Solve for y:}\\\\(10^y-5)^\frac{1}{5}=x\qquad\text{5 power of both sides}\\\\\bigg[(10^y-5)^\frac{1}{5}\bigg]^5=x^5\qquad\text{use}\ (a^n)^m=a^{nm}\\\\(10^y-5)^{\frac{1}{5}\cdot5}=x^5\\\\10^y-5=x^5\qquad\text{add 5 to both sides}\\\\10^y=x^5+5\qquad\log\ \text{of both sides}\\\\\log10^y=\log(x^5+5)\Rightarrow y=\log(x^5+5)](https://tex.z-dn.net/?f=--------------------------%5C%5C2.%5C%5Cy%3D%2810%5Ex-5%29%5E%5Cfrac%7B1%7D%7B5%7D%5C%5C%5C%5C%5Ctext%7BExchange%20x%20and%20y.%20Solve%20for%20y%3A%7D%5C%5C%5C%5C%2810%5Ey-5%29%5E%5Cfrac%7B1%7D%7B5%7D%3Dx%5Cqquad%5Ctext%7B5%20power%20of%20both%20sides%7D%5C%5C%5C%5C%5Cbigg%5B%2810%5Ey-5%29%5E%5Cfrac%7B1%7D%7B5%7D%5Cbigg%5D%5E5%3Dx%5E5%5Cqquad%5Ctext%7Buse%7D%5C%20%28a%5En%29%5Em%3Da%5E%7Bnm%7D%5C%5C%5C%5C%2810%5Ey-5%29%5E%7B%5Cfrac%7B1%7D%7B5%7D%5Ccdot5%7D%3Dx%5E5%5C%5C%5C%5C10%5Ey-5%3Dx%5E5%5Cqquad%5Ctext%7Badd%205%20to%20both%20sides%7D%5C%5C%5C%5C10%5Ey%3Dx%5E5%2B5%5Cqquad%5Clog%5C%20%5Ctext%7Bof%20both%20sides%7D%5C%5C%5C%5C%5Clog10%5Ey%3D%5Clog%28x%5E5%2B5%29%5CRightarrow%20y%3D%5Clog%28x%5E5%2B5%29)

Answer:
5x^2+2x-432
Step-by-step explanation:
15x^2+x-215×2+x−2
=15x^2+x-430+x−2
=15x^2+x+x-430-2
=15x^2+2x-432