Answer:
D. Domain: all rea numbers
Range: y >0
Step-by-step explanation:
Let f(x) =![e^x](https://tex.z-dn.net/?f=e%5Ex)
Domain of function f(x) : all real numbers because it is define for every real number.
Range of function f(x) y >0 because exponential function can never be zero.
g(x)=x-3
Domain of g(x) : all real numbers
Range g(x): all real numbers.
(fg)(x)= f(g(x))
f(x-3)=![e^{x-3}](https://tex.z-dn.net/?f=e%5E%7Bx-3%7D)
(fg)(x)= ![e^{x-3}](https://tex.z-dn.net/?f=e%5E%7Bx-3%7D)
Put x=0 then we get
![(fg)(0)= [tex]e^{0-3}](https://tex.z-dn.net/?f=%28fg%29%280%29%3D%20%5Btex%5De%5E%7B0-3%7D)
(fg)(0)=![e^{-3}](https://tex.z-dn.net/?f=e%5E%7B-3%7D)
Domain of (fg)(x) is the set of real numbers because it is define for every real number.
Exponential function can never be zero .
Function (fg)(x) can never be zero it is always greater than zero because it is an exponential function
Therefore , the range of (fg)(x) is greater than zero.
Hence, option D is correct .
Domain: all real numbers
Range: y >0